Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant Mol Biol ; 79(1-2): 137-55, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22415161

RESUMEN

Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance.


Asunto(s)
Pirofosfatasa Inorgánica/genética , Nicotiana/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Transcripción Genética , Triticum/genética , Adaptación Fisiológica/efectos de los fármacos , Catalasa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/metabolismo , Cinamatos/farmacología , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Higromicina B/análogos & derivados , Higromicina B/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Potasio/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/enzimología , Vacuolas/efectos de los fármacos , Vacuolas/enzimología
2.
Environ Sci Pollut Res Int ; 26(36): 37037-37045, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31745765

RESUMEN

One of the most important strategies evolved by plants to tolerate heavy metals (HMs) is their sequestration into the vacuole. Recent studies have demonstrated that Cu sequestration into vacuole is dependent on the electrochemical gradient generated by vacuolar proton pumps: the V-H+-PPase and the V-H+-ATPase. In a previous study, we demonstrated that co-expression of V-H+-PPase and a sodium/proton antiporter genes, isolated from wheat, in transgenic tobacco plants significantly increases both H+ pumping activity of the endogenous V-H+-ATPase and V-H+-PPase compared to wild-type (WT) plants, all grown in the absence of stress. In the present study, we evaluated the effect of expression, in tobacco, of vacuolar proton pump, TaVP1, singly or in combination with sodium/proton antiporter, TaNHXS1, on copper (Cu) tolerance and accumulation. Results showed that, when subjected to Cu stress, TaVP1 single transgenic tobacco lines exhibited a more robust root system, greater biomass production, less chlorophyll loss, lower MDA and H2O2 production, and higher catalase activity and accumulated more Cu than did WT. Interestingly, double transgenic tobacco lines exhibited the best Cu tolerance and accumulation than either of the single TaVP1 transgenic lines or WT plants, when subjected to excess Cu. In fact, double transgenic lines accumulated 2.5-fold and 1.9-fold more Cu than did WT and single TaVP1 lines, respectively. Thus, these results clearly demonstrate the usefulness of expression of vacuolar proton pump alone or in combination with sodium/proton antiporter as novel strategy for Cu phytoremediation.


Asunto(s)
Cobre/metabolismo , Nicotiana/genética , Plantas Modificadas Genéticamente/metabolismo , Bombas de Protones , Peróxido de Hidrógeno/metabolismo , Pirofosfatasa Inorgánica , Intercambiadores de Sodio-Hidrógeno/genética , Nicotiana/metabolismo , Triticum/metabolismo , Vacuolas
3.
PLoS One ; 13(2): e0193517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29489914

RESUMEN

Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA), ethylene and salicylic acid (SA) are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic stress responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Estrés Fisiológico , Sequías , Inundaciones , Perfilación de la Expresión Génica , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Sales (Química)/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
4.
Phytochemistry ; 117: 537-546, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26047526

RESUMEN

Potassium (K) deficiency is a worldwide problem. Thus, the K biofortification of crops is needed to enhance human nutrition. Tomato represents an ideal candidate for such biofortification programs thanks to its widespread distribution and its easy growth on a commercial scale. However, although tomato is moderately tolerant to abiotic stresses, the crop losses due to salinity can be severe. In this study, we generated transgenic tomato plants over-expressing a Na(+)-K(+)/H(+) exchanger gene (TNHXS1), singly or with H(+)-pyrophosphatase (H(+)-PPiase) gene using a bicistronic construct. Transgenic tomato lines co-expressing both genes (LNV) significantly showed higher salinity tolerance than the wild-type (WT) plans or those expressing the TNHXS1 gene alone (LN). Indeed, under salt stress conditions, double transgenic plants produced higher biomass and retained more chlorophyll and catalase (CAT) activity. In addition, they showed earlier flowering and produced more fruits. To address K deficiencies in humans, an increase of 50% in K content of vegetable products was proposed. In this study, ion content analysis revealed that, under salt stress, fruits from double transgenic plants accumulated 5 times more potassium and 9 times less sodium than WT counterparts. Interestingly, the ionomic analysis of tomato fruits also revealed that LNV had a distinct profile compared to WT and to LN plants. Indeed, LNV fruits accumulated less Fe(2+), Ca(2+), Mg(2+) and Zn(2+), but more Mn(2+). This study demonstrates the effectiveness of bicistronic constructs as an important tool for the enhancement of biofortification and salt stress tolerance in crops.


Asunto(s)
Pirofosfatasa Inorgánica/genética , Potasio/metabolismo , Plantas Tolerantes a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Solanum lycopersicum/fisiología , Biomasa , Catalasa/metabolismo , Clorofila/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Pirofosfatasa Inorgánica/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Modificadas Genéticamente , Potasio/farmacocinética , Tolerancia a la Sal/genética , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Triticum/genética
5.
J Plant Physiol ; 169(1): 98-103, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22056071

RESUMEN

Cadmium (Cd) is considered an extremely significant pollutant due to its high toxicity to many organisms. Plants have evolved several mechanisms to cope with Cd, the most important of which is vacuolar sequestration. Cadmium can be directly transported into vacuoles by cations/H(+) exchangers, such as CAXs, which are energized by the pH gradient established by proton pumps. A cDNA (TaVP1) encoding wheat vacuolar H(+)-pyrophosphatase (V-H-PPase) was ectopically expressed in transgenic tobacco to evaluate whether this proton pump expression would enhance Cd tolerance and accumulation in planta. When TaVP1-expressing plants were exposed to various concentrations of Cd, they were found to be more tolerant to Cd compared to wild type plants. Cadmium accumulation in the plant biomass in transgenic plants was higher than that in wild type plants. To the best of our knowledge, this is the first report on the potential for enhancing proton pump expression as a strategy to improve Cd tolerance and accumulation in plants.


Asunto(s)
Cadmio/metabolismo , Pirofosfatasa Inorgánica/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Adaptación Fisiológica , Clonación Molecular , ADN de Plantas/análisis , ADN de Plantas/genética , Germinación , Pirofosfatasa Inorgánica/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA