Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 129: 104919, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33428921

RESUMEN

Gestational diabetes mellitus (GDM) was associated with greater autism risk in epidemiological studies. Disrupted leptin signaling may contribute to their coincidence, as it is found in both disorders. Given this we examined leptin receptor (Lepr) deficient (BKS.Cg-Dock7m +/+ Leprdb/J diabetic (db)) heterozygous (db/+) mice for autism-relevant behaviors. BKS db/+ females are lean with normal blood glucose, but they develop GDM while pregnant. We hypothesized BKS db/+ offspring might exhibit physiological and behavior traits consistent with autism. Adolescent body weight, fasting blood glucose, serum corticosterone, social preferences, self-grooming, marble burying, social dominance and cognitive flexibility of BKS db/+ mice was compared to C57BLKS/J (BKS) and C57BL/6J (BL6) mice. Male db/+ weighed more and had higher blood glucose and corticosterone relative to BL6, but not BKS mice. Also, male db/+ lacked social interaction preference, explored arenas less, and buried more marbles than BL6, but not BKS males. Male and female db/+ were more dominant and made more mistakes in water T-mazes locating a sunken platform after its position was reversed than BL6, but not BKS mice. Overall BKS db/+, particularly males, exhibited some autism-like social deficits and restrictive-repetitive behaviors relative to BL6, but BKS strain contributions to BKS db/+ behaviors were evident. Since BKS db/+ and BKS behavioral and physiological phenotypes are already so similar, it will be difficult to use these models in studies designed to detect contributions of fetal GDM exposures to offspring behaviors.


Asunto(s)
Trastorno Autístico , Receptores de Leptina , Animales , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Femenino , Leptina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Embarazo , Receptores de Leptina/genética
2.
Molecules ; 26(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805951

RESUMEN

Persistent deficits in social communication and interaction, and restricted, repetitive patterns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD. The endocannabinoid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signaling pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alterations of the ECS have been reported in both the brain and the immune system of ASD subjects. ASD children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen use has been reported to be associated with an increased risk of ASD. This drug can act through the ECS to produce analgesia. It may be that acetaminophen use in children increases the risk for ASD by interfering with the ECS.This mini-review article summarizes the current knowledge on this topic.


Asunto(s)
Acetaminofén/efectos adversos , Trastorno del Espectro Autista , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Acetaminofén/uso terapéutico , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Humanos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Pharmacol Exp Ther ; 371(2): 268-277, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31481515

RESUMEN

Eating disorders such as anorexia typically emerge during adolescence, are characterized by engagement in compulsive and detrimental behaviors, and are often comorbid with neuropsychiatric disorders and drug abuse. No effective treatments exist. Moreover, anorexia lacks adolescent animal models, contributing to a poor understanding of underlying age-specific neurophysiological disruptions. To evaluate the contribution of dopaminergic signaling to the emergence of anorexia-related behaviors during the vulnerable adolescent period, we applied an established adult activity-based anorexia (ABA) paradigm (food restriction plus unlimited exercise access for 4 to 5 days) to adult and adolescent rats of both sexes. At the end of the paradigm, measures of plasma volume, blood hormone levels, dopamine transporter (DAT) expression and function, acute cocaine-induced locomotion, and brain water weight were taken. Adolescents were dramatically more affected by the ABA paradigm than adults in all measures. In vivo chronoamperometry and cocaine locomotor responses revealed sex-specific changes in adolescent DAT function after ABA that were independent of DAT expression differences. Hematocrit, insulin, ghrelin, and corticosterone levels did not resemble shifts typically observed in patients with anorexia, though decreases in leptin levels aligned with human reports. These findings are the first to suggest that food restriction in conjunction with excessive exercise sex-dependently and age-specifically modulate DAT functional plasticity during adolescence. The adolescent vulnerability to this relatively short manipulation, combined with blood measures, evidence need for an optimized age-appropriate ABA paradigm with greater face and predictive validity for the study of the pathophysiology and treatment of anorexia. SIGNIFICANCE STATEMENT: Adolescent rats exhibit a distinctive, sex-specific plasticity in dopamine transporter function and cocaine response after food restriction and exercise access; this plasticity is both absent in adults and not attributable to changes in dopamine transporter expression levels. These novel findings may help explain sex differences in vulnerability to eating disorders and drug abuse during adolescence.


Asunto(s)
Anorexia/etiología , Anorexia/metabolismo , Restricción Calórica , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Locomoción/fisiología , Condicionamiento Físico Animal/fisiología , Factores de Edad , Animales , Restricción Calórica/métodos , Femenino , Masculino , Condicionamiento Físico Animal/métodos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores Sexuales
4.
Pharmacol Res ; 140: 85-99, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30009933

RESUMEN

A variety of human and animal studies support the hypothesis that serotonin (5-hydroxytryptamine or 5-HT) system dysfunction is a contributing factor to the development of autism in some patients. However, many questions remain about how developmental manipulation of various components that influence 5-HT signaling (5-HT synthesis, transport, metabolism) persistently impair social behaviors. This review will summarize key aspects of central 5-HT function important for normal brain development, and review evidence implicating perinatal disruptions in 5-HT signaling in the pathophysiology of autism spectrum disorder. We discuss the importance, and relative dearth, of studies that explore the possible correlation to autism in the interactions between important intrinsic and extrinsic factors that may disrupt 5-HT homeostasis during development. In particular, we focus on exposure to 5-HT transport altering mechanisms such as selective serotonin-reuptake inhibitors or genetic polymorphisms in primary or auxiliary transporters of 5-HT, and how they relate to neurological stores of serotonin and its precursors. A deeper understanding of the many mechanisms by which 5-HT signaling can be disrupted, alone and in concert, may contribute to an improved understanding of the etiologies and heterogeneous nature of this disorder. We postulate that extreme bidirectional perturbations of these factors during development likely compound or synergize to facilitate enduring neurochemical changes resulting in insufficient or excessive 5-HT signaling, that could underlie the persistent behavioral characteristics of autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
5.
Pharmacol Res ; 140: 21-32, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30423430

RESUMEN

Poorly managed gestational diabetes can lead to severe complications for mother and child including fetal overgrowth, neonatal hypoglycemia and increased autism risk. Use of metformin to control it is relatively new and promising. Yet safety concerns regarding gestational metformin use remain, as its long-term effects in offspring are unclear. In light of beneficial findings with metformin for adult mouse social behavior, we hypothesized gestational metformin treatment might also promote offspring sociability. To test this, metformin was administered to non-diabetic, lean C57BL/6 J female mice at mating, with treatment discontinued at birth or wean. Male offspring exposed to metformin through birth lost social interaction preference relative to controls by time in chambers, but not by sniffing measures. Further, prenatal metformin exposure appeared to enhance social novelty preference only in females. However due to unbalanced litters and lack of statistical power, firm establishment of any sex-dependency of metformin's effects on sociability was not possible. Since organic cation transporter 3 (OCT3) transports metformin and is dense in placenta, social preferences of OCT3 knock-out males were measured. Relative to wild-type, OCT3 knock-outs had reduced interaction preference. Our data indicate gestational metformin exposure under non-diabetic conditions, or lack of OCT3, can impair social behavior in male C57BL6/J mice. Since OCT3 transports serotonin and tryptophan, impaired placental OCT3 function is one common mechanism that could persistently impact central serotonin systems and social behavior. Yet no gross alterations in serotonergic function were evident by measure of serotonin transporter density in OCT3, or serotonin turnover in metformin-exposed offspring brains. Mechanisms underlying the behavioral outcomes, and if with gestational diabetes the same would occur, remain unclear. Metformin's impacts on placental transporters and serotonin metabolism or AMPK activity in fetal brain need further investigation to clarify benefits and risks to offspring sociability from use of metformin to treat gestational diabetes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Factor 3 de Transcripción de Unión a Octámeros/genética , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Masculino , Intercambio Materno-Fetal , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Serotonina/metabolismo
6.
Acta Pharmacol Sin ; 40(3): 418-424, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29991708

RESUMEN

Despite the apparent abundance of ligand-gated transient receptor potential vanilloid type 1 (TRPV1) and possible cross talk between the endocannabinoid and endovanilloid systems in the central nervous system (CNS), it is unclear what role TRPV1 receptor activation in CNS plays in neurobehavioral development. We previously reported that capsaicin or WIN55212-2 induces risk aversion in the plus-maze test, which was dependent on the gender and mouse strain used. In this study, pregnant BALBc mice were administered capsaicin (1.0 or 4.0 mg/kg, i.p.) during the second week of gestation. Developmental effects of prenatal exposure to capsaicin were assessed in neonates, and behavioral effects were assessed in adult offspring. Gender- and dose-specific variations in ultrasonic vocalizations, weight gain, righting reflex, and general activity of the pups were observed. Prenatal exposure to capsaicin altered plus-maze performance, especially with further exogenous capsaicin challenge. Furthermore, dose- and gender-specific effects were evident in the conditioned place preference/aversion paradigm following conditioning with capsaicin in adult animals. The capsaicin-induced aversion in the plus-maze test was enhanced by WIN55212-2 and blocked by pretreatment with vanilloid antagonist capsazepine or the CB1 receptor antagonist rimonabant, demonstrating an interaction between the endocannabinoid and endovanilloid systems in CNS. Taken together, the interaction between the endocannabinoid and endovanilloid signaling systems can be exploited for therapeutic applications in health and disease.


Asunto(s)
Conducta Animal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Capsaicina/farmacología , Efectos Tardíos de la Exposición Prenatal/psicología , Receptores de Cannabinoides/metabolismo , Animales , Benzoxazinas/farmacología , Agonistas de Receptores de Cannabinoides/administración & dosificación , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Desarrollo Embrionario/efectos de los fármacos , Femenino , Inyecciones Intraperitoneales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos BALB C , Morfolinas/farmacología , Naftalenos/farmacología , Embarazo , Receptor Cross-Talk , Rimonabant/farmacología , Canales Catiónicos TRPV/agonistas
7.
J Pharmacol Exp Ther ; 360(1): 84-94, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27831486

RESUMEN

Depression is a major public health concern with symptoms that are often poorly controlled by treatment with common antidepressants. This problem is compounded in juveniles and adolescents, because therapeutic options are limited to selective serotonin reuptake inhibitors (SSRIs). Moreover, therapeutic benefits of SSRIs are often especially limited in certain subpopulations of depressed patients, including children and carriers of low-expressing serotonin transporter (SERT) gene variants. Tricyclic antidepressants (TCAs) offer an alternative to SSRIs; however, how age and SERT expression influence antidepressant response to TCAs is not understood. We investigated the relation between antidepressant-like response to the TCA desipramine using the tail suspension test and saturation binding of [3H]nisoxetine to the norepinephrine transporter (NET), the primary target of desipramine, in juvenile (21 days postnatal [P21]), adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. To model carriers of low-expressing SERT gene variants, we used mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). The potency and maximal antidepressant-like effect of desipramine was greater in P21 mice than in P90 mice and was SERT genotype independent. NET expression decreased with age in the locus coeruleus and increased with age in several terminal regions (e.g., the cornu ammonis CA1 and CA3 regions of the hippocampus). Binding affinity of [3H]nisoxetine did not vary as a function of age or SERT genotype. These data show age-dependent shifts for desipramine to produce antidepressant-like effects that correlate with NET expression in the locus coeruleus and suggest that drugs with NET-blocking activity may be an effective alternative to SSRIs in juveniles.


Asunto(s)
Antidepresivos/farmacología , Desipramina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mutación , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Envejecimiento/metabolismo , Animales , Antidepresivos/uso terapéutico , Desipramina/uso terapéutico , Femenino , Genotipo , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Pérdida de Tono Postural/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Ratones
8.
J Pharmacol Exp Ther ; 358(2): 271-81, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288483

RESUMEN

Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents.


Asunto(s)
Antidepresivos/farmacología , Citalopram/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mutación , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Envejecimiento/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Femenino , Genotipo , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Pérdida de Tono Postural/efectos de los fármacos , Masculino , Ratones , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Serotonina/metabolismo
9.
J Neurosci ; 33(25): 10534-43, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785165

RESUMEN

Mood disorders cause much suffering and lost productivity worldwide, compounded by the fact that many patients are not effectively treated by currently available medications. The most commonly prescribed antidepressant drugs are the selective serotonin (5-HT) reuptake inhibitors (SSRIs), which act by blocking the high-affinity 5-HT transporter (SERT). The increase in extracellular 5-HT produced by SSRIs is thought to be critical to initiate downstream events needed for therapeutic effects. A potential explanation for their limited therapeutic efficacy is the recently characterized presence of low-affinity, high-capacity transporters for 5-HT in brain [i.e., organic cation transporters (OCTs) and plasma membrane monoamine transporter], which may limit the ability of SSRIs to increase extracellular 5-HT. Decynium-22 (D-22) is a blocker of these transporters, and using this compound we uncovered a significant role for OCTs in 5-HT uptake in mice genetically modified to have reduced or no SERT expression (Baganz et al., 2008). This raised the possibility that pharmacological inactivation of D-22-sensitive transporters might enhance the neurochemical and behavioral effects of SSRIs. Here we show that in wild-type mice D-22 enhances the effects of the SSRI fluvoxamine to inhibit 5-HT clearance and to produce antidepressant-like activity. This antidepressant-like activity of D-22 was attenuated in OCT3 KO mice, whereas the effect of D-22 to inhibit 5-HT clearance in the CA3 region of hippocampus persisted. Our findings point to OCT3, as well as other D-22-sensitive transporters, as novel targets for new antidepressant drugs with improved therapeutic potential.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Quinolinas/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Barrera Hematoencefálica , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Fenómenos Electrofisiológicos , Fluvoxamina/farmacología , Suspensión Trasera , Hipocampo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones , Proteínas de Transporte de Neurotransmisores/antagonistas & inhibidores , Proteínas de Transporte de Neurotransmisores/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Quinolinas/farmacocinética , Serotonina/metabolismo , Síndrome de la Serotonina/psicología , Espectrofotometría Ultravioleta
10.
Proc Natl Acad Sci U S A ; 108(6): 2581-6, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262817

RESUMEN

The ability to make choices and carry out appropriate actions is critical for individual survival and well-being. Choice behaviors, from hard-wired to experience-dependent, have been observed across the animal kingdom. Although differential engagement of sensory neuronal pathways is a known mechanism, neurobiological substrates in the brain that underlie choice making downstream of sensory perception are not well understood. Here, we report a behavioral paradigm in zebrafish in which a half-light/half-dark visual image evokes an innate choice behavior, light avoidance. Neuronal activity mapping using the immediate early gene c-fos reveals the engagement of distinct brain regions, including the medial zone of the dorsal telencephalic region (Dm) and the dorsal nucleus of the ventral telencephalic area (Vd), the teleost anatomical homologs of the mammalian amygdala and striatum, respectively. In animals that were subjected to the identical sensory stimulus but displayed little or no avoidance, strikingly, the Dm and Vd were not engaged, despite similar levels of activation in the brain nuclei involved in visual processing. Based on these findings and previous connectivity data, we propose a neural circuitry model in which the Dm serves as a brain center, the activity of which predicates this choice behavior in zebrafish.


Asunto(s)
Conducta Animal/fisiología , Mapeo Encefálico , Conducta de Elección/fisiología , Telencéfalo/fisiología , Percepción Visual/fisiología , Animales , Células Receptoras Sensoriales/fisiología , Pez Cebra
11.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496609

RESUMEN

Substance use disorder (SUD) is a heterogeneous disorder, where severity, symptoms, and patterns of substance use vary across individuals. Yet, when rats are allowed to self-administer drugs such as cocaine under short-access conditions, their behavior tends to be well-regulated and homogeneous in nature; though individual differences can emerge when rats are provided long- or intermittent-access to cocaine. In contrast to cocaine, significant individual differences emerge when rats are allowed to self-administer 3,4-methylenedioxypyrovalerone (MDPV), even under short-access conditions, wherein ~30% of rats rapidly transition to high levels of drug-taking. This study assessed the SUD-like phenotypes of male and female Sprague Dawley rats self-administering MDPV (0.032 mg/kg/infusion) or cocaine (0.32 mg/kg/infusion) by comparing level of drug intake, responding during periods of signaled drug unavailability, and sensitivity to footshock punishment to test the hypotheses that: (1) under short-access conditions, rats that self-administer MDPV will exhibit a more robust SUD-like phenotype than rats that self-administered cocaine; (2) female rats will have a more severe phenotype than male rats; and (3) compared to short-access, long- and intermittent-access to MDPV or cocaine self-administration will result in a more robust SUD-like phenotype. After short-access, rats that self-administered MDPV exhibited a more severe phenotype than rats that self-administered cocaine. Though long- and intermittent-access to cocaine and MDPV self-administration altered drug-taking patterns, manipulating access conditions did not systematically alter their SUD-like phenotype. Evidence from behavioral and quantitative autoradiography studies suggest that these differences are unlikely due to changes in expression levels of dopamine transporter, dopamine D2 or D3 receptors, or 5-HT1B, 5-HT2A, or 5-HT2C receptors, though these possibilities cannot be ruled out. These results show that the phenotype exhibited by rats self-administering MDPV differs from that observed for rats self-administering cocaine, and suggests that individuals that use MDPV and/or related cathinones may be at greater risk for developing a SUD, and that short-access MDPV self-administration may provide a useful method to understand the factors that mediate the transition to problematic or disordered substance use in humans.

12.
Behav Processes ; 211: 104929, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586617

RESUMEN

Understanding how natural aging impacts rodent performance in translational behavior tests is critical to teasing apart impairments due to age-related decline from neurodegenerative disorder modeling. Reduced neuropilin and tolloid-like 1 (NETO1), an accessory protein of ionotropic glutamate receptors involved in synaptic plasticity, was associated with Alzheimer's disease, yet aging effects on Neto1 remain unclear. For these reasons, our goal was to characterize how Neto1 expression corresponded with social, repetitive, and spatial learning behaviors and stress response across the C57BL/6J mouse lifespan. We measured social preferences in three-chamber tests, and motor stereotypies by marble burying. Cognitive flexibility is typically assessed in the Morris water maze (MWM), wherein C57BL/6J mice exhibit deficits with age. However, fatigue or locomotor impairment may confound interpretation of MWM performance. Therefore, we used a less arduous water T-maze (WTM) to compare spatial learning flexibility in 2, 9-15, and 24-month-old male and female mice to test the hypothesis that deficits would emerge with age. In both sexes, 9-15-month-olds made more chamber entries during social preference tests, while 2-month-olds did less social sniffing than aged mice. No age or sex differences emerged in marble burying or serum corticosterone measurements. In 24-month-olds hippocampal Neto1was increased relative to 2-month-olds, and male cognitive flexibility was strong, while spatial learning and reversal learning of 24-month-old females was impaired in WTM irrespective of Neto1 expression. The WTM is a useful alternative assessment for cognitive flexibility deficits in aged mice, and the role of hippocampal Neto1 in promoting social sniffing is of interest.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37273836

RESUMEN

Cannabidiol (CBD) is a non-intoxicating phytochemical from Cannabis sativa that is increasingly used to manage pain. The potential for CBD to ameliorate dimensional behavior symptoms occurring in multiple psychiatric disorders was suggested, including social interaction impairments. To test this hypothesis, adult male BTBRT+Itpr3tf/J (BTBR) mice, a model of idiopathic autism exhibiting social preference deficits and restrictive repetitive behaviors, were acutely treated with vehicle or 0.1, 1, or 10 mg/kg CBD. Social interaction preference was assessed 50 min after treatment, followed by social novelty preference at 60 min, marble burying at 75 min and social dominance at 120 min. CBD (10 mg/kg) enhanced BTBR social interaction but not social novelty preference, marble burying or dominance, with serum levels = 29 ± 11 ng/mg at 3 h post-injection. Next, acute 10 mg/kg CBD was compared to vehicle treatment in male serotonin transporter (SERT) knock-out mice, since SERT deficiency is an autism risk factor, and in their wildtype background strain controls C57BL/6J mice. CBD treatment generally enhanced social interaction preference and attenuated social novelty preference, yet neither marble burying nor dominance was affected. These findings show acute treatment with as little as 10 mg/kg purified CBD can enhance social interaction preference in male mice that are otherwise socially deficient.

14.
Environ Sci Technol ; 46(4): 2427-35, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22296170

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) represent a class of pharmaceuticals previously reported in aquatic ecosystems. SSRIs are designed to treat depression and other disorders in humans, but are recognized to elicit a variety of effects on aquatic organisms, ranging from neuroendocrine disruption to behavioral perturbations. However, an understanding of the relationships among mechanistic responses associated with SSRI targets and ecologically important behavioral responses of fish remains elusive. Herein, linking Adverse Outcomes Pathways (AOP) models with internal dosimetry represent potential approaches for developing an understanding of pharmaceutical risks to aquatic life. We selected sertraline as a model SSRI for a 28-d study with adult male fathead minnows. Binding activity of the serotonin reuptake transporter (SERT), previously demonstrated in mammals and fish models to respond to sertraline exposure, was selected as an endpoint associated with therapeutic activity. Shelter-seeking behavior was monitored using digital tracking software to diagnose behavioral abnormalities. Fish plasma levels of sertraline exceeding human therapeutic doses were accurately modeled from external exposure concentrations when pH influences on ionization and log D were considered. We observed statistically significant decreases in binding at the therapeutic target (SERT) and shelter-seeking behavior when fish plasma levels exceeded human therapeutic thresholds. Such observations highlights the strengths of coupling physiologically based pharmacokinetic modeling and AOP approaches and suggest that internal dosimetry should be monitored to advance an understanding of the ecological consequences of SSRI exposure to aquatic vertebrates.


Asunto(s)
Antidepresivos/farmacología , Cyprinidae/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Contaminantes Químicos del Agua/farmacología , Animales , Antidepresivos/sangre , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Modelos Biológicos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/sangre , Sertralina/sangre , Contaminantes Químicos del Agua/sangre
15.
Front Pharmacol ; 13: 841423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754508

RESUMEN

Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney, liver, placenta, and intestines, where they facilitate the transport of cations and other substrates between extracellular fluids and cells. Despite increasing reliance on ectothermic vertebrates as alternative toxicology models, properties of their OCT homologs transporting many drugs and toxins remain poorly characterized. Recently, in zebrafish (Danio rerio), two proteins with functional similarities to human OCTs were shown to be highly expressed in the liver, kidney, eye, and brain. This study is the first to characterize in vivo uptake to the brain and the high-affinity brain membrane binding of the mammalian OCT blocker 1-1'-diethyl-2,2'cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min, and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in zebrafish were characterized in two anxiety-relevant tests. In the first cohort of zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22 made more white arm entries, and females spent more time in white than controls. Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging, without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT site(s).

16.
Genes Brain Behav ; 21(1): e12750, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978321

RESUMEN

Williams Syndrome results in distinct behavioral phenotypes, which include learning deficits, anxiety, increased phobias and hypersociability. While the underlying mechanisms driving this subset of phenotypes is unknown, oxytocin (OT) dysregulation is hypothesized to be involved as some studies have shown elevated blood OT and altered OT receptor expression in patients. A "Complete Deletion" (CD) mouse, modeling the hemizygous deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These CD mice also exhibit impaired fear responses in the conditioned fear task. Here, we address whether OT dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an OT receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in CD mice. Thus, increased OT signaling is not acutely responsible for this phenotype. We also evaluated OT receptor and serotonin transporter availability in regions related to fear learning, memory and sociability using autoradiography in wild type and CD mice. While no differences withstood correction, we identified regions that may warrant further investigation. There was a nonsignificant decrease in OT receptor expression in the lateral septal nucleus and nonsignificant lowered serotonin transporter availability in the striatum and orbitofrontal cortex. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.


Asunto(s)
Miedo , Memoria , Receptores de Oxitocina/metabolismo , Síndrome de Williams/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Femenino , Masculino , Ratones , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/antagonistas & inhibidores , Conducta Social , Síndrome de Williams/fisiopatología
17.
J Neurochem ; 116(2): 291-303, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21070242

RESUMEN

BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT(1A) and 5-HT(2A) receptor densities among BTBR and C57 strains. Autoradiographic [(3) H] cyanoimipramine (1 nM) binding to SERT was 20-30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates, [(3) H] citalopram maximal binding (B(max) ) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (K(D) ) was 2.0 ± 0.3 nM versus 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT(1A) and 5-HT(2A) receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [(35) S] GTPγS binding in the BTBR hippocampal CA(1) region was 28% higher, indicating elevated 5-HT(1A) capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT(1A) receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D(2) /5-HT(2) receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying, but failed to improve sociability. Overall, altered SERT and/or 5-HT(1A) functionality in hippocampus could contribute to the relatively low sociability of BTBR mice.


Asunto(s)
Receptor de Serotonina 5-HT1A/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Conducta Social , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Buspirona/farmacología , Fluoxetina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Unión Proteica/fisiología , Transporte de Proteínas , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología
18.
ACS Chem Neurosci ; 10(10): 4319-4327, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31468969

RESUMEN

Vortioxetine is a multimodal antidepressant with agonist activity at serotonin (5-HT)1A and 5-HT1B receptors that blocks the 5-HT transporter (SERT). Previously in male BTBR T+Itpr3tf/J (BTBR) mice, the 5-HT1A partial agonist buspirone and SERT blocker fluoxetine enhanced social interaction but did not reduce marble burying. We hypothesized that vortioxetine through its actions at SERT and 5-HT1A could improve BTBR sociability and via 5-HT1B could reduce burying better than sertraline, a selective SERT blocker. Vortioxetine (5-10 mg/kg) or sertraline (2 mg/kg) was administered 30 min presociability and 75 min prior to marble burying tests. Vortioxetine (10 mg/kg) occupancy (%) was 84 ± 1 for SERT, 31 ± 12 for 5-HT1A, and 80 ± 5 for 5-HT1B in brain at 110 min postinjection, and serum oxytocin was 24% lower (p < 0.01) in vortioxetine-treated mice. Vortioxetine reduced novel object investigation, whereas sertraline enhanced overall sociability. However, the vortioxetine-induced increase in social sniffing was transient, as it was lost with 60-120 min presociability test delays in subsequent experiments. Vortioxetine and sertraline both reduced BTBR marble burying. Based on vortioxetine occupancy, actions at SERT and/or 5-HT1B are more likely to underlie its behavioral effects than 5-HT1A. Overall, vortioxetine has great potential for suppressing restrictive-repetitive behaviors, but it appears less promising as a sociability enhancer.


Asunto(s)
Conducta Animal/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Conducta Social , Vortioxetina/farmacología , Animales , Trastorno Autístico , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Sertralina/farmacología
19.
PLoS One ; 14(1): e0210389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30629642

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social interactions, difficulty with communication, and repetitive behavior patterns. In humans affected by ASD, there is a male pre-disposition towards the condition with a male to female ratio of 4:1. In part due to the complex etiology of ASD including genetic and environmental interplay, there are currently no available medical therapies to improve the social deficits of ASD. Studies in rodent models and humans have shown promising therapeutic effects of oxytocin in modulating social adaptation. One pharmacological approach to stimulating oxytocinergic activity is the melanocortin receptor 4 agonist Melanotan-II (MT-II). Notably the effects of oxytocin on environmental rodent autism models has not been investigated to date. We used a maternal immune activation (MIA) mouse model of autism to assess the therapeutic potential of MT-II on autism-like features in adult male mice. The male MIA mice exhibited autism-like features including impaired social behavioral metrics, diminished vocal communication, and increased repetitive behaviors. Continuous administration of MT-II to male MIA mice over a seven-day course resulted in rescue of social behavioral metrics. Normal background C57 male mice treated with MT-II showed no significant alteration in social behavioral metrics. Additionally, there was no change in anxiety-like or repetitive behaviors following MT-II treatment of normal C57 mice, though there was significant weight loss following subacute treatment. These data demonstrate MT-II as an effective agent for improving autism-like behavioral deficits in the adult male MIA mouse model of autism.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Péptidos Cíclicos/uso terapéutico , alfa-MSH/análogos & derivados , Animales , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/fisiología , Conducta Social , alfa-MSH/uso terapéutico
20.
Neuropsychopharmacology ; 33(2): 320-31, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17406647

RESUMEN

Chronic stress is a risk factor for the development of many psychopathological conditions in humans, including major depression and anxiety disorders. There is a high degree of comorbidity of depression and anxiety. Moreover, cognitive impairments associated with frontal lobe dysfunction, including deficits in cognitive set-shifting and behavioral flexibility, are increasingly recognized as major components of depression, anxiety disorders, and other stress-related psychiatric illnesses. To begin to understand the neurobiological mechanisms underlying the cognitive and emotional consequences of chronic stress, it is necessary to employ an animal model that exhibits similar effects. In the present study, a rat model of chronic unpredictable stress (CUS) consistently induced a cognitive impairment in extradimensional set shifting capability in an attentional set shifting test, suggesting an alteration in function of the medial prefrontal cortex. CUS also increased anxiety-like behavior on the elevated plus-maze. Further, chronic treatment both with the selective norepinephrine reuptake blocker, desipramine (7.5 mg/kg/day), and the selective serotonin reuptake blocker, escitalopram (10 mg/kg/day), beginning 1 week before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced deficit in extradimensional set-shifting. Chronic desipramine treatment also prevented the CUS-induced increase in anxiety-like behavioral reactivity on the plus-maze, but escitalopram was less effective on this measure. Thus, CUS induced both cognitive and emotional disturbances that are similar to components of major depression and anxiety disorders. These effects were prevented by chronic treatment with antidepressant drugs, consistent also with clinical evidence that relapse of depressive episodes can be prevented by antidepressant drug treatment.


Asunto(s)
Antidepresivos/uso terapéutico , Ansiedad , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Estrés Psicológico/psicología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Electrochoque , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA