Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 124(11): 2288-2300, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32096638

RESUMEN

The design of sensors for detecting formaldehyde (HCHO) gas in the environment is vastly necessary since even at low concentrations, it is very harmful to human health. Herein, a novel, reproductive, selective, and sensitive HCHO sensor has been designed by functionalizing SnO2 with ß12-borophene sheets for the first time via density functional theory calculations. The results revealed that the wide direct band-gap SnO2 semiconductor and zero-band-gap ß12-borophene form a distinctive orbital hybridization heterostructure with a moderate direct band gap of 1.09 eV and effectively enhance the electrical conductivity, selectivity, long-term stability, and the HCHO molecule response. The HCHO molecule chemisorbs in several orientations on the ß12-borophene/SnO2 surface, behaving as a charge acceptor and donor at some point. Moreover, applied biaxial strain and external electric field enhance the stability, band gap, and charge transfer of the adsorbent-adsorbate interactions. Therefore, a ß12-borophene/SnO2 sensor with excellent adsorption, work function, tunable band gaps, charge redistributions, and sensing properties can be applied in indoor pollution detection and optoelectronic applications, where an external electric field can be used.

2.
Inorg Chem ; 53(9): 4418-29, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24721109

RESUMEN

The synthesis of a Co(III) corrole, [10-(2-[[4-(1H-imidazol-1-ylmethyl)benzoyl]amino]phenyl)-5,15-diphenylcorrolato]cobalt(III), DPTC-Co, bearing a tail motif terminating in an imidazole ligand that coordinates Co(III), is described. The corrole therefore places Co(III) in a similar environment to that in aquacobalamin (vitamin B12a, H2OCbl(+)) but with a different equatorial ligand. In coordinating solvents, DPTC-Co is a mixture of five- and six-coordinate species, with a solvent molecule occupying the axial coordination site trans to the proximal imidazole ligand. In an 80:20 MeOH/H2O solution, allowed to age for about 1 h, the predominant species is the six-coordinate aqua species [H2O-DPTC-Co]. It is monomeric at least up to concentrations of 60 µM. The coordinated H2O has a pKa = 9.76(6). Under the same conditions H2OCbl(+) has a pKa = 7.40(2). Equilibrium constants for the substitution of coordinated H2O by exogenous ligands are reported as log K values for neutral N-, P-, and S-donor ligands, and CN(-), NO2(-), N3(-), SCN(-), I(-), and Cys in 80:20 MeOH/H2O solution at low ionic strength. The log K values for [H2O-DPTC-Co] correlate reasonably well with those for H2OCbl(+); therefore, Co(III) displays a similar behavior toward these ligands irrespective of whether the equatorial ligand is a corrole or a corrin. Pyridine is an exception; it is poorly coordinated by H2OCbl(+) because of the sterically hindered coordination site of the corrin. With few exceptions, [H2O-DPTC-Co] has a higher affinity for neutral ligands than H2OCbl(+), but the converse is true for anionic ligands. Density functional theory (DFT) models (BP86/TZVP) show that the Co-ligand bonds tend to be longer in corrin than in corrole complexes, explaining the higher affinity of the latter for neutral ligands. It is argued that the residual charge at the metal center (+2 in corrin, 0 in corrole) increases the affinity of H2OCbl(+) for anionic ligands through an electrostatic attraction. The topological properties of the electron density in the DFT-modeled compounds are used to explore the nature of the bonding between the metal and the ligands.


Asunto(s)
Porfirinas/química , Vitamina B 12/análogos & derivados , Ligandos , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta , Vitamina B 12/síntesis química , Vitamina B 12/química , Difracción de Rayos X
3.
J Phys Chem A ; 117(14): 3057-68, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23510290

RESUMEN

Density functional theory (DFT) calculations (BP86/6-31+G(d,p)) and an analysis of the electron density using Bader's quantum theory of atoms in molecules (QTAIM) are used to explore factors that influence the bond dissociation energy (BDE) of the Co-C bond in models for the cofactor in the coenzyme B12-dependent enzymes. An increase in the basicity of L in [L-Co(III)(corrin)-CH3](n+), L = NH3, NH2(-), and NH(2-), causes an elongation of the trans Co-C bond, but this does not necessarily cause the BDE to decrease. The bond between the metal and the N-donor of L, Co-Nα, usually becomes shorter after Co-C homolysis as the resulting five-coordinate product permits the metal ion to move toward L. This contraction increases with the basicity of L and stabilizes the five-coordinate product. The BDE is found to correlate well with two variables, the basicity of L and the difference in the Co-Nα bond length between the five-coordinate product and the six-coordinate ground state. When L is a naturally occurring amino acid or a model for its metal-coordinating side chain, the BDE is found to be moderately dependent on L and decrease with an increase in the softness of the donor atom of L. Sulfides produce a BDE < 30 kcal mol(-1), whereas neutral alcohol donors produce a stronger Co-C bond with a BDE of 34-35 kcal mol(-1). All other ligands are associated with a trans Co-C bond that is almost invariant in strength and with a BDE of 31-33 kcal mol(-1). Models of the type [H3N-Co(III)(N4)-CH3](n+), where N4 = bis(dimethylglyoxime), porphyrin, corrin, and corrole, show that the nature of the tetraaza equatorial ligand can change BDE values by over 8 kcal mol(-1); the BDE when N4 = bis(dimethylglyoxime) is significantly larger than for the other three systems, among which differences in BDE are quite small (2.4 kcal mol(-1)). The differential stabilization of the five-coordinate product by the shrinking of the Co-Nα bond (in corrin and in corrole) or its elongation (in porphyrin and in bis(dimethylglyoxime)) is an important factor in determining the BDE of these systems. Corrin has the longest and weakest Co-C bond; this, together with a significant contraction of the Co-Nα after homolysis, is likely to be the origin of its relatively low BDE.


Asunto(s)
Carbono/química , Cobalto/química , Cobamidas/química , Simulación por Computador , Teoría Cuántica , Complejos de Coordinación/química , Ligandos , Modelos Moleculares
4.
Polymers (Basel) ; 14(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35160584

RESUMEN

Anion exchange membrane fuel cells (AEMFCs) are considered superior to their counterpart proton exchange fuel cells due to their many advantages. Both fuel cells use membranes as polymer electrolytes to improve fuel-cell properties and power output. This work evaluates a series of imidazolium-quaternized poly(2,6-dimethyl-1,4-phenylene oxide) (ImPPO) functionalized zeolitic imidazole framework-8 (ZIF-8) (ImPPO/ZIF-8) as anion exchange membrane (AEM) electrolytes in a direct methanol alkaline fuel cell. FTIR and 1H NMR were used to confirm the successful membrane fabrication. SEM and TGA were used to study the morphological and thermal stability properties of the ImPPO/ZIF-8 membranes. The AEMs obtained in this work had contact angles ranging from 55.27-106.73°, water uptake from 9-83%, ion exchange capacity (IEC) from 1.93-3.15 mmol/g, and ion conductivity (IC) from 1.02-2.43 mS/cm. The best-performing membrane, ImPPO/3%ZIF-8, showed a water uptake of up to 35% at 80 °C, a swelling ratio of 15.1% after 72 h, IEC of 4.06 mmol/g, and IC of 1.96 mS/cm. A power density of 158.10 mW/cm2 was obtained. This makes ZIF-8 a good prospect as a filler for enhancing membrane properties.

5.
J Mol Model ; 27(6): 158, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963473

RESUMEN

The detection of SF6 decomposition products plays a significant part in identifying and assessing the electric discharge faults in SF6 insulation equipment. We performed dispersion corrected density functional theory calculations to study the adsorption performance of CoOOH upon SO2, SF4, SOF2, CF4, and SO2F2 toxic gases, to investigate their potential application as a gas sensor. The results clearly show a weak force between the CoOOH sheet, and the molecular gas with moderate adsorption strength enhances the desorption processes. According to Löwdin charge population analysis, electrons transfer from the molecular gas to the CoOOH surface, where the molecular gas behaves like an electron donor. The lower bandgap energy of the adsorption systems compared with pristine CoOOH significantly increases its electrical conductivity and gas sensing performance. The higher charge transfer and adsorption energy of the SOF2 adsorption system compared with the other four molecular gas is due to orbital hybridization around the Fermi energy. The theoretical computed adsorption energy with ultrahigh sensitivity and fast recovery time suggests that SF6 decomposed gases reusability is achieved with CoOOH as a resistance-type gas sensor.

6.
Biomolecules ; 9(12)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835879

RESUMEN

To date, Plasmodium falciparum is one of the most lethal strains of the malaria parasite. P. falciparum lacks the required enzymes to create its own purines via the de novo pathway, thereby making Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPT) a crucial enzyme in the malaria life cycle. Recently, studies have described iso-mukaadial acetate and ursolic acid acetate as promising antimalarials. However, the mode of action is still unknown, thus, the current study sought to investigate the selective inhibitory and binding actions of iso-mukaadial acetate and ursolic acid acetate against recombinant PfHGXPT using in-silico and experimental approaches. Recombinant PfHGXPT protein was expressed using E. coli BL21 cells and homogeneously purified by affinity chromatography. Experimentally, iso-mukaadial acetate and ursolic acid acetate, respectively, demonstrated direct inhibitory activity towards PfHGXPT in a dose-dependent manner. The binding affinity of iso-mukaadial acetate and ursolic acid acetate on the PfHGXPT dissociation constant (KD), where it was found that 0.0833 µM and 2.8396 µM, respectively, are indicative of strong binding. The mode of action for the observed antimalarial activity was further established by a molecular docking study. The molecular docking and dynamics simulations show specific interactions and high affinity within the binding pocket of Plasmodium falciparum and human hypoxanthine-guanine phosphoribosyl transferases. The predicted in silico absorption, distribution, metabolism and excretion/toxicity (ADME/T) properties predicted that the iso-mukaadial acetate ligand may follow the criteria for orally active drugs. The theoretical calculation derived from ADME, molecular docking and dynamics provide in-depth information into the structural basis, specific bonding and non-bonding interactions governing the inhibition of malarial. Taken together, these findings provide a basis for the recommendation of iso-mukaadial acetate and ursolic acid acetate as high-affinity ligands and drug candidates against PfHGXPT.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Pentosiltransferasa/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Acetatos/química , Acetatos/farmacología , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Ligandos , Modelos Moleculares , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología , Ácido Ursólico
7.
J Phys Chem B ; 116(30): 8836-45, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22731781

RESUMEN

Time-dependent density-functional theory and density-functional theory are applied to study the cis influence of the equatorial macrocycle in vitamin B(12) derivatives. A series of dicyanocobalt corrinoids, CN-[Co(III)-corrin]-CN, where the C(10)H of the corrin ring is replaced by different substituents, X, is considered. The calculated UV-visible absorption spectra, the charge distribution obtained from a Bader QTAIM analysis of the electron density, the CN stretch frequencies of the axial cyano ligands and the electron densities at some bond critical points are compared. The main absorption bands in the UV-visible spectra depend on the electron donating or withdrawing power of X, as assessed from its Hammett σ(p) constants. For X with a stronger electron donating power than H, the other properties do not change appreciably. However, when σ(p)(X) > σ(p)(H), these properties vary linearly with the electron withdrawing power of the substituent. This helps explain the experimental observation that substitution of the axial ligand is more difficult and proceeds more slowly with the increase of the electron withdrawing power of the C(10) substituent.


Asunto(s)
Cobalto/química , Corrinoides/química , Cianuros/química , Electrones , Isomerismo , Teoría Cuántica , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA