Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 129(3): 475-485, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365284

RESUMEN

PURPOSE: To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS: In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS: The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS: O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.


Asunto(s)
Proteína BRCA1 , Neoplasias Endometriales , Femenino , Humanos , Proteína BRCA1/genética , Reparación del ADN por Recombinación/genética , Proteína BRCA2/genética , Ftalazinas/efectos adversos
2.
Mod Pathol ; 33(10): 1896-1909, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32457410

RESUMEN

Salivary duct carcinoma (SDCa) is a rare cancer with high rate of metastases and poor survival despite aggressive multimodality treatment. This study analyzes the genetic changes in SDCa, their impact on cancer pathways, and evaluates whether molecular patterns can identify subgroups with distinct clinical characteristics and outcome. Clinicopathologic details and tissue samples from 66 patients (48 males, 18 females) treated between 1995 and 2018 were obtained from multiple institutions. Androgen receptor (AR) was assessed by immunohistochemistry, and the Illumina TruSight 170 gene panel was used for DNA sequencing. Male gender, lympho-vascular invasion, lymph node metastasis, and smoking were significant predictors of disease-free survival. AR was present in 79%. Frequently encountered alterations were mutations in TP53 (51%), PIK3CA (32%) and HRAS (22%), as well as amplifications of CDK4/6 (22%), ERBB2 (21%), MYC (16%), and deletions of CDKN2A (13%). TP53 mutation and MYC amplifications were associated with decreased disease-free survival. Analysis of cancer pathways revealed that the PI3K pathway was most commonly affected. Alterations in the cell cycle pathway were associated with impaired disease-free survival (HR 2.6, P = 0.038). Three subgroups based on AR and ERBB2 status were identified, which featured distinct molecular patterns and outcome. Among AR positive SDCa, HRAS mutations were restricted to AR positive tumors without ERBB2 amplification and HRAS mutations featured high co-occurrence with PIK3CA alterations, which seems specific to SDCa. AR negative SDCa were associated with poor disease-free survival in multivariate analysis (HR 4.5, P = 0.010) and none of these tumors exhibited ERBB2 amplification or HRAS mutations. AR and ERBB2 status in SDCa thus classifies tumors with distinct molecular profiles relevant to future targeted therapy. Furthermore, clinical factors such as smoking and molecular features such as MYC amplification may serve as markers of poor prognosis of SDCa.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal/genética , Neoplasias de las Glándulas Salivales/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
3.
Ann Neurol ; 83(1): 115-130, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29283441

RESUMEN

OBJECTIVE: Single, large-scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large-scale mtDNA deletions in skeletal muscle. METHODS: We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large-scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. RESULTS: We have defined 3 "classes" of single, large-scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. INTERPRETATION: Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex-specific protein-encoding genes. Furthermore, removal of mt-tRNA genes impacts specific complexes only at high deletion levels, when complex-specific protein-encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115-130.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Eliminación de Secuencia/genética , Adulto , Anciano , Biopsia , Estudios de Cohortes , Complejo I de Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Eliminación de Gen , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Fosforilación Oxidativa , Adulto Joven
4.
J Pathol ; 246(4): 427-432, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30146801

RESUMEN

Inherited mitochondrial DNA (mtDNA) mutations cause mitochondrial disease, but mtDNA mutations also occur somatically and accumulate during ageing. Studies have shown that the mutation load of some inherited mtDNA mutations decreases over time in blood, suggesting selection against the mutation. However, it is unknown whether such selection occurs in other mitotic tissues, and where it occurs within the tissue. Gastrointestinal epithelium is a canonical mitotic tissue rapidly renewed by stem cells. Intestinal crypts (epithelium) undergo monoclonal conversion with a single stem cell taking over the niche and producing progeny. We show: (1) that there is a significantly lower mtDNA mutation load in the mitotic epithelium of the gastrointestinal tract when compared to the smooth muscle in the same tissue in patients with the pathogenic m.3243A>G and m.8344A>G mutations; (2) that there is considerable variation seen in individual crypts, suggesting changes in the stem cell population; (3) that this lower mutation load is reflected in the absence of a defect in oxidative phosphorylation in the epithelium. This suggests that there is selection against inherited mtDNA mutations in the gastrointestinal stem cells that is in marked contrast to the somatic mtDNA mutations that accumulate with age in epithelial stem cells leading to a biochemical defect. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
ADN Mitocondrial/genética , Células Epiteliales/química , Mucosa Gástrica/química , Mucosa Intestinal/química , Mitocondrias/genética , Miopatías Mitocondriales/genética , Mutación , Células Madre/química , Adulto , Estudios de Casos y Controles , Senescencia Celular/genética , Células Epiteliales/patología , Femenino , Mucosa Gástrica/patología , Predisposición Genética a la Enfermedad , Herencia , Humanos , Mucosa Intestinal/patología , Persona de Mediana Edad , Mitocondrias/patología , Miopatías Mitocondriales/patología , Mitosis , Miocitos del Músculo Liso/química , Miocitos del Músculo Liso/patología , Fosforilación Oxidativa , Linaje , Fenotipo , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Lisina/genética , Selección Genética , Células Madre/patología
5.
N Engl J Med ; 372(9): 885-887, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25629662

RESUMEN

Mitochondrial disease is maternally inherited and refractory to treatment, but assisted reproduction methods can result in unaffected pregnancies. The authors provide estimates of the number of affected pregnancies per year in the United Kingdom and the United States.


Asunto(s)
ADN Mitocondrial , Fertilidad , Fertilización In Vitro/legislación & jurisprudencia , Regulación Gubernamental , Mitocondrias/trasplante , Enfermedades Mitocondriales/genética , Mutación , Adolescente , Adulto , Tasa de Natalidad , Femenino , Humanos , Reino Unido/epidemiología , Adulto Joven
6.
Nucleic Acids Res ; 44(11): 5313-29, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27131788

RESUMEN

Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease.


Asunto(s)
ADN Mitocondrial , Reordenamiento Génico , Miositis por Cuerpos de Inclusión/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Biopsia , Niño , Femenino , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/patología , Eliminación de Secuencia , Adulto Joven
7.
Br J Haematol ; 178(2): 196-208, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28466550

RESUMEN

Multiple Myeloma (MM) is a haematological malignancy characterised by the clonal expansion of plasma cells (PCs) within the bone marrow. Despite advances in therapy, MM remains a largely incurable disease with a median survival of 6 years. In almost all cases, the development of MM is preceded by the benign PC condition Monoclonal Gammopathy of Undetermined Significance (MGUS). Recent studies show that the transformation of MGUS to MM is associated with complex genetic changes. Understanding how these changes contribute to evolution will present targets for clinical intervention. We discuss three models of MM evolution; the linear, the expansionist and the intraclonal heterogeneity models. Of particular interest is the intraclonal heterogeneity model. Here, distinct populations of MM PCs carry differing combinations of genetic mutations. Acquisition of additional mutations can contribute to subclonal lineages where "driver" mutations may influence selective pressure and dominance, and "passenger" mutations are neutral in their effects. Furthermore, studies show that clinical intervention introduces additional selective pressure on tumour cells and can influence subclone survival, leading to therapy resistance. This review discusses how Next Generation Sequencing approaches are revealing critical insights into the genetics of MM development, disease progression and treatment. MM disease progression will illuminate possible mechanisms underlying the tumour.


Asunto(s)
Genómica/métodos , Mieloma Múltiple/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Progresión de la Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética/genética , Predicción , Genómica/tendencias , Humanos , Factores Inmunológicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mutación/genética
8.
Ann Neurol ; 80(5): 686-692, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27453452

RESUMEN

OBJECTIVES: The m.3243A>G MTTL1 mutation is the most common cause of mitochondrial disease; yet there is limited awareness of intestinal pseudo-obstruction (IPO) in this disorder. We aimed to determine the prevalence, severity, and clinical outcome of patients with m.3243A>G-related mitochondrial disease manifesting with IPO. METHODS: In this large, observational cohort study, we assessed the clinical, molecular, and radiological characteristics of patients with genetically determined m.3243A>G-related mitochondrial disease, who presented with severe symptoms suggestive of bowel obstruction in the absence of an occluding lesion. RESULTS: Between January 2009 and June 2015, 226 patients harbouring the m.3243A>G mutation were recruited to the Medical Research Council Centre Mitochondrial Disease Patient Cohort, Newcastle. Thirty patients (13%) presented acutely with IPO. Thirteen of these patients had a preceding history of stroke-like episodes, whereas 1 presented 27 years previously with their first stroke-like episode. Eight patients developed IPO concomitantly during an acute stroke-like episode. Regression analysis suggested stroke was the strongest predictor for development of IPO, in addition to cardiomyopathy, low body mass index and high urinary mutation load. Poor clinical outcome was observed in 6 patients who underwent surgical procedures. INTERPRETATION: Our findings suggest, in this common mitochondrial disease, that IPO is an under-recognized, often misdiagnosed clinical entity. Poor clinical outcome associated with stroke and acute surgical intervention highlights the importance of the neurologist having a high index of suspicion, particularly in the acute setting, to instigate timely coordination of appropriate care and management with other specialists. Ann Neurol 2016;80:686-692.


Asunto(s)
ADN Mitocondrial/genética , Seudoobstrucción Intestinal/diagnóstico por imagen , Seudoobstrucción Intestinal/genética , Enfermedades Mitocondriales/genética , ARN de Transferencia de Leucina/genética , Accidente Cerebrovascular/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Seudoobstrucción Intestinal/etiología , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Evaluación de Resultado en la Atención de Salud , Prevalencia , Accidente Cerebrovascular/etiología , Adulto Joven
9.
Eur Heart J ; 37(32): 2552-9, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26188002

RESUMEN

AIMS: To provide insight into the mechanism of sudden adult death syndrome (SADS) and to give new clinical guidelines for the cardiac management of patients with the most common mitochondrial DNA mutation, m.3243A>G. These studies were initiated after two young, asymptomatic adults harbouring the m.3243A>G mutation died suddenly and unexpectedly. The m.3243A>G mutation is present in ∼1 in 400 of the population, although the recognized incidence of mitochondrial DNA (mtDNA) disease is ∼1 in 5000. METHODS AND RESULTS: Pathological studies including histochemistry and molecular genetic analyses performed on various post-mortem samples including cardiac tissues (atrium and ventricles) showed marked respiratory chain deficiency and high levels of the m.3243A>G mutation. Systematic review of cause of death in our m.3243A>G patient cohort showed the person-time incidence rate of sudden adult death is 2.4 per 1000 person-years. A further six cases of sudden death among extended family members have been identified from interrogation of family pedigrees. CONCLUSION: Our findings suggest that SADS is an important cause of death in patients with m.3243A>G and likely to be due to widespread respiratory chain deficiency in cardiac muscle. The involvement of asymptomatic relatives highlights the importance of family tracing in patients with m.3243A>G and the need for specific cardiac arrhythmia surveillance in the management of this common genetic disease. In addition, these findings have prompted the derivation of cardiac guidelines specific to patients with m.3243A>G-related mitochondrial disease. Finally, due to the prevalence of this mtDNA point mutation, we recommend inclusion of testing for m.3243A>G mutations in the genetic autopsy of all unexplained cases of SADS.


Asunto(s)
Muerte Súbita , Adulto , ADN Mitocondrial , Humanos , Mitocondrias , Enfermedades Mitocondriales , Mutación
10.
Neuropathol Appl Neurobiol ; 42(5): 477-92, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26337858

RESUMEN

AIMS: Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. METHODS: We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age-matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. RESULTS: Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. CONCLUSIONS: This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia.


Asunto(s)
Ataxia Cerebelosa/etiología , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/complicaciones , Células de Purkinje/enzimología , Sinapsis/enzimología , Adulto , Ataxia Cerebelosa/enzimología , Ataxia Cerebelosa/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Células de Purkinje/patología , Sinapsis/patología , Adulto Joven
11.
Neuropathol Appl Neurobiol ; 41(3): 288-303, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24750247

RESUMEN

AIMS: Sporadic inclusion body myositis (sIBM) is the most common late onset muscle disease causing progressive weakness. In light of the lack of effective treatment, we investigated potential causes underlying muscle wasting. We hypothesized that accumulation of mitochondrial respiratory deficiency in muscle fibres may lead to fibre atrophy and degeneration, contributing to muscle mass reduction. METHODS: Histochemical and immunohistochemical analyses were performed on muscle biopsies from 16 sIBM patients to detect activity of mitochondrial enzymes and expression of mitochondrial respiratory chain proteins along with inflammatory markers respectively. Mitochondrial DNA mutations were assessed in single muscle fibres using real-time PCR. RESULTS: We identified respiratory-deficient fibres at different stages of mitochondrial dysfunction, with downregulated expression of complex I of mitochondrial respiratory chain being the initial feature. We detected mitochondrial DNA rearrangements in the majority of individual respiratory-deficient muscle fibres. There was a strong correlation between number of T lymphocytes and macrophages residing in muscle tissue and the abundance of respiratory-deficient fibres. Moreover, we found that respiratory-deficient muscle fibres were more likely to be atrophic compared with respiratory-normal counterparts. CONCLUSIONS: Our findings suggest that mitochondrial dysfunction has a role in sIBM progression. A strong correlation between the severity of inflammation, degree of mitochondrial changes and atrophy implicated existence of a mechanistic link between these three parameters. We propose a role for inflammatory cells in the initiation of mitochondrial DNA damage, which when accumulated, causes respiratory dysfunction, fibre atrophy and ultimately degeneration of muscle fibres.


Asunto(s)
Inflamación/patología , Mitocondrias/patología , Miositis por Cuerpos de Inclusión/patología , ADN Mitocondrial/genética , Humanos , Inmunohistoquímica , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Brain ; 137(Pt 2): 323-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24277717

RESUMEN

Single, large-scale deletions of mitochondrial DNA are a common cause of mitochondrial disease and cause a broad phenotypic spectrum ranging from mild myopathy to devastating multi-system syndromes such as Kearns-Sayre syndrome. Studies to date have been inconsistent on the value of putative predictors of clinical phenotype and disease progression such as mutation load and the size or location of the deletion. Using a cohort of 87 patients with single, large-scale mitochondrial DNA deletions we demonstrate that a variety of outcome measures such as COX-deficient fibre density, age-at-onset of symptoms and progression of disease burden, as measured by the Newcastle Mitochondrial Disease Adult Scale, are significantly (P < 0.05) correlated with the size of the deletion, the deletion heteroplasmy level in skeletal muscle, and the location of the deletion within the genome. We validate these findings with re-analysis of 256 cases from published data and clarify the previously conflicting information of the value of these predictors, identifying that multiple regression analysis is necessary to understand the effect of these interrelated predictors. Furthermore, we have used mixed modelling techniques to model the progression of disease according to these predictors, allowing a better understanding of the progression over time of this strikingly variable disease. In this way we have developed a new paradigm in clinical mitochondrial disease assessment and management that sidesteps the perennial difficulty of ascribing a discrete clinical phenotype to a broad multi-dimensional and progressive spectrum of disease, establishing a framework to allow better understanding of disease progression.


Asunto(s)
ADN Mitocondrial/genética , Progresión de la Enfermedad , Eliminación de Gen , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , ADN Mitocondrial/antagonistas & inhibidores , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
13.
PLoS Genet ; 8(11): e1003082, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166522

RESUMEN

Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA) mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown whether there are selective constraints, which have been shown to occur in the germline, on the occurrence and expansion of these mtDNA mutations within individual somatic cells. Here we compared the pattern and spectrum of mutations observed in ageing human colon to those observed in the general population (germline variants) and those associated with primary mtDNA disease. The pathogenicity of the protein encoding mutations was predicted using a computational programme, MutPred, and the scores obtained for the three groups compared. We show that the mutations associated with ageing are randomly distributed throughout the genome, are more frequently non-synonymous or frameshift mutations than the general population, and are significantly more pathogenic than population variants. Mutations associated with primary mtDNA disease were significantly more pathogenic than ageing or population mutations. These data provide little evidence for any selective constraints on the occurrence and expansion of mtDNA mutations in somatic cells of the human colon during human ageing in contrast to germline mutations seen in the general population.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Mitocondrias , Selección Genética , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Colon/metabolismo , Colon/fisiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/fisiología , Epitelio/metabolismo , Epitelio/fisiología , Mutación de Línea Germinal , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mutación , Mutación Puntual/genética
14.
J Vis ; 12(6)2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22715195

RESUMEN

The contrast detection threshold of a grating located in the periphery is increased if a surrounding grating of the same frequency and orientation is present. This inhibition between center and surround has been termed surround suppression. In this work we measured the spatial frequency bandwidth of surround suppression in the periphery for different spatial frequencies (0.5, 1.1, 3, and 5 cycles/deg) of a sinusoidal grating (target) surrounded by a grating with different spatial frequencies (surround). Using a Bayesian adaptive staircase, we measured contrast detection thresholds in an 8AFC detection task in which the target (grating with a 2.3-deg Butterworth window) could appear in one of eight possible positions at 4° eccentricity. The target was surrounded by a grating (with a 18° Butterworth window) with the same or an orthogonal orientation. In each session we fixed the spatial frequency of the target and changed the spatial frequency and the orientation of the surround. When the surround was orthogonal to the target, the thresholds were similar to those obtained without surround, independent of the surrounding spatial frequency. However, when the target and surround had the same orientation and spatial frequency, the contrast threshold was increased by a factor ranging from 3 to 6 across subjects. This suppression reduced rapidly as the spatial frequency of the surround moved away from that of the target. The bandwidth of the suppressive effect depended on spatial frequency, declining from 2.9 octaves at 0.5 c/deg to 1 octave for frequencies above 3 c/deg. This is consistent with the bandwidth of individual simple cells in visual cortex and of spatial frequency channels measured psychophysically, both of which decline with increasing spatial frequency. This suggests that surround suppression may be due to relatively precise inhibition by cells with the same tuning as the target.


Asunto(s)
Sensibilidad de Contraste/fisiología , Modelos Neurológicos , Inhibición Neural/fisiología , Retina/fisiología , Percepción Espacial/fisiología , Adolescente , Adulto , Teorema de Bayes , Humanos , Orientación/fisiología , Estimulación Luminosa/métodos , Retina/citología , Campos Visuales/fisiología , Adulto Joven
15.
NPJ Precis Oncol ; 5(1): 58, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162978

RESUMEN

While several resources exist that interpret therapeutic significance of genomic alterations in cancer, many regional real-world issues limit access to drugs. There is a need for a pragmatic, evidence-based, context-adapted tool to guide clinical management based on molecular biomarkers. To this end, we have structured a compendium of approved and experimental therapies with associated biomarkers following a survey of drug regulatory databases, existing knowledge bases, and published literature. Each biomarker-disease-therapy triplet was categorised using a tiering system reflective of key therapeutic considerations: approved and reimbursed therapies with respect to a jurisdiction (Tier 1), evidence of efficacy or approval in another jurisdiction (Tier 2), evidence of antitumour activity (Tier 3), and plausible biological rationale (Tier 4). Two resistance categories were defined: lack of efficacy (Tier R1) or antitumor activity (Tier R2). Based on this framework, we curated a digital resource focused on drugs relevant in the Australian healthcare system (TOPOGRAPH: Therapy Oriented Precision Oncology Guidelines for Recommending Anticancer Pharmaceuticals). As of November 2020, TOPOGRAPH comprised 2810 biomarker-disease-therapy triplets in 989 expert-appraised entries, including 373 therapies, 199 biomarkers, and 106 cancer types. In the 345 therapies catalogued, 84 (24%) and 65 (19%) were designated Tiers 1 and 2, respectively, while 271 (79%) therapies were supported by preclinical studies, early clinical trials, retrospective studies, or case series (Tiers 3 and 4). A companion algorithm was also developed to support rational, context-appropriate treatment selection informed by molecular biomarkers. This framework can be readily adapted to build similar resources in other jurisdictions to support therapeutic decision-making.

16.
Oncotarget ; 11(3): 305, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32076493

RESUMEN

[This corrects the article DOI: 10.18632/oncotarget.27206.].

17.
Nat Commun ; 11(1): 449, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974379

RESUMEN

Chromosome arm aneuploidies (CAAs) are pervasive in cancers. However, how they affect cancer development, prognosis and treatment remains largely unknown. Here, we analyse CAA profiles of 23,427 tumours, identifying aspects of tumour evolution including probable orders in which CAAs occur and CAAs predicting tissue-specific metastasis. Both haematological and solid cancers initially gain chromosome arms, while only solid cancers subsequently preferentially lose multiple arms. 72 CAAs and 88 synergistically co-occurring CAA pairs multivariately predict good or poor survival for 58% of 6977 patients, with negligible impact of whole-genome doubling. Additionally, machine learning identifies 31 CAAs that robustly alter response to 56 chemotherapeutic drugs across cell lines representing 17 cancer types. We also uncover 1024 potential synthetic lethal pharmacogenomic interactions. Notably, in predicting drug response, CAAs substantially outperform  mutations and focal deletions/amplifications combined. Thus, CAAs predict cancer prognosis, shape tumour evolution, metastasis and drug response, and may advance precision oncology.


Asunto(s)
Aneuploidia , Cromosomas Humanos , Resistencia a Antineoplásicos/genética , Tasa de Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Humanos , Estimación de Kaplan-Meier , Aprendizaje Automático , Modelos Biológicos , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico , Procesos Estocásticos
18.
Oncotarget ; 10(56): 5755-5767, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31645898

RESUMEN

Kinases such as MEK are attractive targets for novel therapy in cancer, including acute myeloid leukaemia (AML). Acquired and inherent resistance to kinase inhibitors, however, is becoming an increasingly important challenge for the clinical success of such therapeutics, and often arises from mutations in the drug-binding domain of the target kinase. To identify possible causes of resistance to MEK inhibition, we generated a model of resistance by long-term treatment of AML cells with AZD6244 (selumetinib). Remarkably, resistance to MEK inhibition was due to acquired PTEN haploinsufficiency, rather than mutation of MEK. Resistance via this mechanism was confirmed using CRISPR/Cas9 technology targeting exon 5 of PTEN. While PTEN loss has been previously implicated in resistance to a number of other therapeutic agents, this is the first time that it has been shown directly and in AML.

19.
Leukemia ; 33(2): 457-468, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30046162

RESUMEN

Multiple myeloma (MM) is a largely incurable haematological malignancy defined by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow. Clonal heterogeneity has recently been established as a feature in MM, however, the subclonal evolution associated with disease progression has not been described. Here, we performed whole-exome sequencing of serial samples from 10 patients, providing new insights into the progression from monoclonal gammopathy of undetermined significance (MGUS) and smouldering MM (SMM), to symptomatic MM. We confirm that intraclonal genetic heterogeneity is a common feature at diagnosis and that the driving events involved in disease progression are more subtle than previously reported. We reveal that MM evolution is mainly characterised by the phenomenon of clonal stability, where the transformed subclonal PC populations identified at MM are already present in the asymptomatic MGUS/SMM stages. Our findings highlight the possibility that PC extrinsic factors may play a role in subclonal evolution and MGUS/SMM to MM progression.


Asunto(s)
Biomarcadores de Tumor/genética , Evolución Clonal , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/patología , Células Cultivadas , Estudios de Cohortes , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Mieloma Múltiple/genética , Pronóstico , Secuenciación del Exoma
20.
Brain Pathol ; 29(1): 97-113, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021052

RESUMEN

Alpers' syndrome is an early-onset neurodegenerative disorder often caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG) which is essential for mitochondrial DNA (mtDNA) replication. Alpers' syndrome is characterized by intractable epilepsy, developmental regression and liver failure which typically affects children aged 6 months-3 years. Although later onset variants are now recognized, they differ in that they are primarily an epileptic encephalopathy with ataxia. The disorder is progressive, without cure and inevitably leads to death from drug-resistant status epilepticus, often with concomitant liver failure. Since our understanding of the mechanisms contributing the neurological features in Alpers' syndrome is rudimentary, we performed a detailed and quantitative neuropathological study on 13 patients with clinically and histologically-defined Alpers' syndrome with ages ranging from 2 months to 18 years. Quantitative immunofluorescence showed severe respiratory chain deficiencies involving mitochondrial respiratory chain subunits of complex I and, to a lesser extent, complex IV in inhibitory interneurons and pyramidal neurons in the occipital cortex and in Purkinje cells of the cerebellum. Diminished densities of these neuronal populations were also observed. This study represents the largest cohort of post-mortem brains from patients with clinically defined Alpers' syndrome where we provide quantitative evidence of extensive complex I defects affecting interneurons and Purkinje cells for the first time. We believe interneuron and Purkinje cell pathology underpins the clinical development of seizures and ataxia seen in Alpers' syndrome. This study also further highlights the extensive involvement of GABAergic neurons in mitochondrial disease.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder/genética , Esclerosis Cerebral Difusa de Schilder/patología , Adolescente , Ataxia/genética , Encéfalo/patología , Niño , Preescolar , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/fisiología , ADN Mitocondrial/genética , Electroencefalografía , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Enfermedades Mitocondriales , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Neuropatología , Convulsiones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA