Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7984): 826-833, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853119

RESUMEN

CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.


Asunto(s)
Adenosina Trifosfato , Bacteroides fragilis , Sistemas CRISPR-Cas , Escherichia coli , S-Adenosilmetionina , Sistemas de Mensajero Secundario , Adenosina Trifosfato/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/inmunología , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Sistemas CRISPR-Cas/fisiología , Endonucleasas/química , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ARN/inmunología , ARN/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Nature ; 608(7924): 808-812, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948638

RESUMEN

Cyclic nucleotide signalling is a key component of antiviral defence in all domains of life. Viral detection activates a nucleotide cyclase to generate a second messenger, resulting in activation of effector proteins. This is exemplified by the metazoan cGAS-STING innate immunity pathway1, which originated in bacteria2. These defence systems require a sensor domain to bind the cyclic nucleotide and are often coupled with an effector domain that, when activated, causes cell death by destroying essential biomolecules3. One example is the Toll/interleukin-1 receptor (TIR) domain, which degrades the essential cofactor NAD+ when activated in response to infection in plants and bacteria2,4,5 or during programmed nerve cell death6. Here we show that a bacterial antiviral defence system generates a cyclic tri-adenylate that binds to a TIR-SAVED effector, acting as the 'glue' to allow assembly of an extended superhelical solenoid structure. Adjacent TIR subunits interact to organize and complete a composite active site, allowing NAD+ degradation. Activation requires extended filament formation, both in vitro and in vivo. Our study highlights an example of large-scale molecular assembly controlled by cyclic nucleotides and reveals key details of the mechanism of TIR enzyme activation.


Asunto(s)
Bacterias , Nucleótidos Cíclicos , Receptores de Interleucina-1 , Receptores Toll-Like , Animales , Antivirales/inmunología , Antivirales/metabolismo , Bacterias/inmunología , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , NAD/metabolismo , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/metabolismo , Receptores de Interleucina-1/química , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Sistemas de Mensajero Secundario , Receptores Toll-Like/química , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
3.
Nature ; 577(7791): 572-575, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942067

RESUMEN

The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA)1,2 and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP)3-5. Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain6, sculpting a powerful antiviral response7-10 that can drive viruses to extinction7,8. Cyclic nucleotides are increasingly implicated in host-pathogen interactions11-13. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA4). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA4 specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA4 signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.


Asunto(s)
Sistemas CRISPR-Cas/inmunología , Endonucleasas/metabolismo , Interacciones Microbiota-Huesped/inmunología , Sulfolobus/virología , Proteínas Virales/metabolismo , Virus/enzimología , Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , ADN Viral/metabolismo , Endonucleasas/química , Modelos Moleculares , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/metabolismo , Oligorribonucleótidos/química , Oligorribonucleótidos/metabolismo , Filogenia , Transducción de Señal , Sulfolobus/genética , Sulfolobus/inmunología , Sulfolobus/metabolismo , Proteínas Virales/química , Proteínas Virales/clasificación , Virus/inmunología
4.
Nucleic Acids Res ; 52(12): 7129-7141, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38808661

RESUMEN

Recognition of RNA from invading mobile genetic elements (MGE) prompts type III CRISPR systems to activate an HD nuclease domain and/or a nucleotide cyclase domain in the Cas10 subunit, eliciting an immune response. The cyclase domain can generate a range of nucleotide second messengers, which in turn activate a diverse family of ancillary effector proteins. These provide immunity by non-specific degradation of host and MGE nucleic acids or proteins, perturbation of membrane potentials, transcriptional responses, or the arrest of translation. The wide range of nucleotide activators and downstream effectors generates a complex picture that is gradually being resolved. Here, we carry out a global bioinformatic analysis of type III CRISPR loci in prokaryotic genomes, defining the relationships of Cas10 proteins and their ancillary effectors. Our study reveals that cyclic tetra-adenylate is by far the most common signalling molecule used and that many loci have multiple effectors. These typically share the same activator and may work synergistically to combat MGE. We propose four new candidate effector protein families and confirm experimentally that the Csm6-2 protein, a highly diverged, fused Csm6 effector, is a ribonuclease activated by cyclic hexa-adenylate.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional , Biología Computacional/métodos , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Nucleic Acids Res ; 51(19): 10590-10605, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37747760

RESUMEN

Type III CRISPR systems synthesize cyclic oligoadenylate (cOA) second messengers as part of a multi-faceted immune response against invading mobile genetic elements (MGEs). cOA activates non-specific CRISPR ancillary defence nucleases to create a hostile environment for MGE replication. Csm6 ribonucleases bind cOA using a CARF (CRISPR-associated Rossmann Fold) domain, resulting in activation of a fused HEPN (Higher Eukaryotes and Prokaryotes Nucleotide binding) ribonuclease domain. Csm6 enzymes are widely used in a new generation of diagnostic assays for the detection of specific nucleic acid species. However, the activation mechanism is not fully understood. Here we characterised the cyclic hexa-adenylate (cA6) activated Csm6' ribonuclease from the industrially important bacterium Streptococcus thermophilus. Crystal structures of Csm6' in the inactive and cA6 bound active states illuminate the conformational changes which trigger mRNA destruction. Upon binding of cA6, there is a close to 60° rotation between the CARF and HEPN domains, which causes the 'jaws' of the HEPN domain to open and reposition active site residues. Key to this transition is the 6H domain, a right-handed solenoid domain connecting the CARF and HEPN domains, which transmits the conformational changes for activation.


Asunto(s)
Ribonucleasas , Streptococcus thermophilus , Dominio Catalítico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Nucleótidos Cíclicos , Ribonucleasas/química , Ribonucleasas/metabolismo , Sistemas de Mensajero Secundario , Streptococcus thermophilus/química
6.
Nature ; 562(7726): 277-280, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30232454

RESUMEN

The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids1-3. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA4,5. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Proteínas Asociadas a CRISPR/clasificación , Sistemas CRISPR-Cas/genética , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Oligorribonucleótidos/metabolismo , Sulfolobus solfataricus/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Cinética , Modelos Moleculares , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sistemas de Mensajero Secundario , Sulfolobus solfataricus/genética
8.
Nucleic Acids Res ; 50(19): 11214-11228, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36305833

RESUMEN

Type I CRISPR systems are the most common CRISPR type found in bacteria. They use a multisubunit effector, guided by crRNA, to detect and bind dsDNA targets, forming an R-loop and recruiting the Cas3 enzyme to facilitate target DNA destruction, thus providing immunity against mobile genetic elements. Subtypes have been classified into families A-G, with type I-G being the least well understood. Here, we report the composition, structure and function of the type I-G Cascade CRISPR effector from Thioalkalivibrio sulfidiphilus, revealing key new molecular details. The unique Csb2 subunit processes pre-crRNA, remaining bound to the 3' end of the mature crRNA, and seven Cas7 subunits form the backbone of the effector. Cas3 associates stably with the effector complex via the Cas8g subunit and is important for target DNA recognition. Structural analysis by cryo-Electron Microscopy reveals a strikingly curved backbone conformation with Cas8g spanning the belly of the structure. These biochemical and structural insights shed new light on the diversity of type I systems and open the way to applications in genome engineering.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Ectothiorhodospiraceae , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN/química , Proteínas Bacterianas/química
9.
Ann Bot ; 132(2): 293-318, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37439499

RESUMEN

BACKGROUND AND AIMS: The Lythraceae are a mainly subtropical to tropical family of the order Myrtales with 28 currently accepted genera and approximately 600 species. There is currently no well-supported phylogenetic and biogeographical hypothesis of the Lythraceae incorporating all currently accepted genera, which we sought to provide. METHODS: Plastomes of representative species of 18 distinct Lythraceae genera were sequenced and annotated. Together with existing sequences, plastomes of all 28 currently accepted genera in the Lythraceae were brought together for the first time. The plastomes were aligned and a Bayesian phylogenetic hypothesis was produced. We then conducted a time-calibrated Bayesian analysis and a biogeographical analysis. KEY RESULTS: Plastome-based Bayesian and maximum-likelihood phylogenetic trees are generally congruent with recent nuclear phylogenomic data and resolve two deeply branching major clades in the Lythraceae. One major clade concentrates shrubby and arboreal South American and African genera that inhabit seasonally dry environments, with larger, often winged seeds, adapted to dispersal by the wind. The second major clade concentrates North American, Asian, African and several near-cosmopolitan herbaceous, shrubby and arboreal genera, often inhabiting humid or aquatic environments, with smaller seeds possessing structures that facilitate dispersal by water. CONCLUSIONS: We hypothesize that the Lythraceae dispersed early in the Late Cretaceous from South American to North American continents, with subsequent expansion in the Late Cretaceous of a North American lineage through Laurasia to Africa via a boreotropical route. Two later expansions of South American clades to Africa in the Palaeocene and Eocene, respectively, are also hypothesized. Transoceanic dispersal in the family is possibly facilitated by adaptations to aquatic environments that are common to many extant genera of the Lythraceae, where long-distance dispersal and vicariance may be invoked to explain several remarkable disjunct distributions in Lythraceae clades.


Asunto(s)
Lythraceae , Filogenia , Filogeografía , Teorema de Bayes , África
10.
Nucleic Acids Res ; 49(5): 2777-2789, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590098

RESUMEN

Cells and organisms have a wide range of mechanisms to defend against infection by viruses and other mobile genetic elements (MGE). Type III CRISPR systems detect foreign RNA and typically generate cyclic oligoadenylate (cOA) second messengers that bind to ancillary proteins with CARF (CRISPR associated Rossman fold) domains. This results in the activation of fused effector domains for antiviral defence. The best characterised CARF family effectors are the Csm6/Csx1 ribonucleases and DNA nickase Can1. Here we investigate a widely distributed CARF family effector with a nuclease domain, which we name Can2 (CRISPR ancillary nuclease 2). Can2 is activated by cyclic tetra-adenylate (cA4) and displays both DNase and RNase activity, providing effective immunity against plasmid transformation and bacteriophage infection in Escherichia coli. The structure of Can2 in complex with cA4 suggests a mechanism for the cA4-mediated activation of the enzyme, whereby an active site cleft is exposed on binding the activator. These findings extend our understanding of type III CRISPR cOA signalling and effector function.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Desoxirribonucleasa I/química , Ribonucleasas/química , Clostridiales/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/química , Desoxirribonucleasa I/metabolismo , Activación Enzimática , Escherichia coli/virología , Secuencias Repetitivas Esparcidas , Metales/química , Modelos Moleculares , Dominios Proteicos , Ribonucleasas/metabolismo
11.
Nucleic Acids Res ; 48(11): 6149-6156, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32347937

RESUMEN

Type III CRISPR systems synthesise cyclic oligoadenylate (cOA) second messengers in response to viral infection of bacteria and archaea, potentiating an immune response by binding and activating ancillary effector nucleases such as Csx1. As these effectors are not specific for invading nucleic acids, a prolonged activation can result in cell dormancy or death. Some archaeal species encode a specialised ring nuclease enzyme (Crn1) to degrade cyclic tetra-adenylate (cA4) and deactivate the ancillary nucleases. Some archaeal viruses and bacteriophage encode a potent ring nuclease anti-CRISPR, AcrIII-1, to rapidly degrade cA4 and neutralise immunity. Homologues of this enzyme (named Crn2) exist in type III CRISPR systems but are uncharacterised. Here we describe an unusual fusion between cA4-activated CRISPR ribonuclease (Csx1) and a cA4-degrading ring nuclease (Crn2) from Marinitoga piezophila. The protein has two binding sites that compete for the cA4 ligand, a canonical cA4-activated ribonuclease activity in the Csx1 domain and a potent cA4 ring nuclease activity in the C-terminal Crn2 domain. The cA4 binding affinities and activities of the two constituent enzymes in the fusion protein may have evolved to ensure a robust but time-limited cOA-activated ribonuclease activity that is finely tuned to cA4 levels as a second messenger of infection.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ribonucleasas/metabolismo , Sitios de Unión , Modelos Moleculares , Dominios Proteicos , ARN/metabolismo , Estabilidad del ARN , Sistemas de Mensajero Secundario
12.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297852

RESUMEN

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Asunto(s)
Magnoliopsida , Myrtales , Núcleo Celular , Magnoliopsida/genética , Filogenia
13.
Mol Cell ; 52(1): 124-34, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24119402

RESUMEN

The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I-III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family.


Asunto(s)
Proteínas Arqueales/química , Proteínas Asociadas a CRISPR/química , Sulfolobus solfataricus/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Secuenciación de Nucleótidos de Alto Rendimiento , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína , ARN de Archaea/química , Análisis de Secuencia de ARN , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Sulfolobus solfataricus/genética
14.
Nucleic Acids Res ; 47(17): 9259-9270, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31392987

RESUMEN

The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.


Asunto(s)
Nucleótidos de Adenina/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Mycobacterium tuberculosis/genética , Oligorribonucleótidos/genética , Inmunidad Adaptativa/inmunología , Nucleótidos de Adenina/biosíntesis , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Secuencias Repetitivas Esparcidas/genética , Secuencias Repetitivas Esparcidas/inmunología , Mycobacterium tuberculosis/inmunología , Oligorribonucleótidos/biosíntesis , Células Procariotas/inmunología , División del ARN/genética , División del ARN/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
15.
Mol Cell ; 45(3): 303-13, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22227115

RESUMEN

The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a protospacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.


Asunto(s)
Proteínas Arqueales/química , Secuencias Invertidas Repetidas , ARN de Archaea/química , Sulfolobus solfataricus/metabolismo , Proteínas Arqueales/aislamiento & purificación , Virus de Archaea/inmunología , Secuencia de Bases , Cristalografía por Rayos X , Sustancias Macromoleculares/química , Sustancias Macromoleculares/aislamiento & purificación , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , División del ARN , ARN de Archaea/genética , ARN de Archaea/aislamiento & purificación , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/inmunología , Sulfolobus solfataricus/virología
16.
Nucleic Acids Res ; 46(3): 1007-1020, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29228332

RESUMEN

The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.


Asunto(s)
Proteínas Arqueales/genética , Sistemas CRISPR-Cas , ADN Intergénico/genética , Factores de Integración del Huésped/genética , ARN Guía de Kinetoplastida/genética , Sulfolobus solfataricus/genética , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/metabolismo , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonación Molecular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN de Archaea , ADN Intergénico/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Factores de Integración del Huésped/metabolismo , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
17.
Grana ; 58(4): 227-275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275086

RESUMEN

The pantropical Picrodendraceae produce mostly spheroidal to slightly oblate, echinate pollen grains equipped with narrow circular to elliptic pori that can be hard to identify to family level in both extant and fossil material using light microscopy only. Fossil pollen of the family have been described from the Paleogene of America, Antarctica, Australia, New Zealand, and Europe, but until now none have been reported from Afro-India. Extant pollen described here include representatives from all recent Picrodendraceae genera naturally occurring in Africa and/or Madagascar and south India and selected closely related tropical American taxa. Our analyses, using combined light microscopy and scanning electron microscopy, show that pollen of the Afro-Indian genera encompass three morphological types: Type 1, comprising only Hyaenanche; Type 2, including Aristogeitonia, Mischodon, Oldfieldia and Voatamalo; Type 3, comprising the remaining two genera, Androstachys and Stachyandra. Based on the pollen morphology presented here it is evident that some previous light microscopic accounts of spherical and echinate fossil pollen affiliated with Arecaceae, Asteraceae, Malvaceae, and Myristicaceae from the African continent could belong to Picrodendraceae. The pollen morphology of Picrodendraceae, fossil pollen records, a dated intra-familial phylogeny, seed dispersal modes, and the regional Late Cretaceous to early Cenozoic paleogeography, together suggest the family originated in the Americas and dispersed from southern America across Antarctica and into Australasia. A second dispersal route is believed to have occurred from the Americas into continental Africa via the North Atlantic Land Bridge and Europe.

18.
Nucleic Acids Res ; 44(4): 1789-99, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26801642

RESUMEN

CRISPR-Cas is an RNA-guided adaptive immune system that protects bacteria and archaea from invading nucleic acids. Type III systems (Cmr, Csm) have been shown to cleave RNA targets in vitro and some are capable of transcription-dependent DNA targeting. The crenarchaeon Sulfolobus solfataricus has two divergent subtypes of the type III system (Sso-IIID and a Cmr7-containing variant of Sso-IIIB). Here, we report that both the Sso-IIID and Sso-IIIB complexes cleave cognate RNA targets with a ruler mechanism and 6 or 12 nt spacing that relates to the organization of the Cas7 backbone. This backbone-mediated cleavage activity thus appears universal for the type III systems. The Sso-IIIB complex is also known to possess a distinct 'UA' cleavage mode. The predominant activity observed in vitro depends on the relative molar concentration of protein and target RNA. The Sso-IIID complex can cleave plasmid DNA targets in vitro, generating linear DNA products with an activity that is dependent on both the cyclase and HD nuclease domains of the Cas10 subunit, suggesting a role for both nuclease active sites in the degradation of double-stranded DNA targets.


Asunto(s)
Bacterias/genética , Sistemas CRISPR-Cas , Sulfolobus solfataricus/genética , Transcripción Genética , ADN/genética , ARN de Archaea/genética , ARN Guía de Kinetoplastida/genética
19.
Nucleic Acids Res ; 42(10): 6532-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753403

RESUMEN

CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Highly studied CRISPR-Cas systems such as those in Escherichia coli and Pseudomonas aeruginosa have a single Cas6 enzyme that is an integral subunit of the surveillance complex. By contrast, Sulfolobus solfataricus has a complex CRISPR-Cas system with three types of surveillance complexes (Cascade/type I-A, CSM/type III-A and CMR/type III-B), five Cas6 paralogues and two different CRISPR-repeat families (AB and CD). Here, we investigate the kinetic properties of two different Cas6 paralogues from S. solfataricus. The Cas6-1 subtype is specific for CD-family CRISPR repeats, generating crRNA by multiple turnover catalysis whilst Cas6-3 has a broader specificity and also processes a non-coding RNA with a CRISPR repeat-related sequence. Deep sequencing of crRNA in surveillance complexes reveals a biased distribution of spacers derived from AB and CD loci, suggesting functional coupling between Cas6 paralogues and their downstream effector complexes.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endorribonucleasas/metabolismo , ARN/metabolismo , Sulfolobus solfataricus/enzimología , ARN no Traducido/metabolismo , Especificidad por Sustrato , Sulfolobus solfataricus/genética
20.
Proc Natl Acad Sci U S A ; 109(7): E398-405, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22106294

RESUMEN

ssDNA-binding proteins (SSBs) based on the oligonucleotide-binding fold are considered ubiquitous in nature and play a central role in many DNA transactions including replication, recombination, and repair. We demonstrate that the Thermoproteales, a clade of hyperthermophilic Crenarchaea, lack a canonical SSB. Instead, they encode a distinct ssDNA-binding protein that we term "ThermoDBP," exemplified by the protein Ttx1576 from Thermoproteus tenax. ThermoDBP binds specifically to ssDNA with low sequence specificity. The crystal structure of Ttx1576 reveals a unique fold and a mechanism for ssDNA binding, consisting of an extended cleft lined with hydrophobic phenylalanine residues and flanked by basic amino acids. Two ssDNA-binding domains are linked by a coiled-coil leucine zipper. ThermoDBP appears to have displaced the canonical SSB during the diversification of the Thermoproteales, a highly unusual example of the loss of a "ubiquitous" protein during evolution.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Thermoproteales/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Unión Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA