Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 21(1): 7, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898475

RESUMEN

BACKGROUND: The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. RESULTS: We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. CONCLUSIONS: These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico/genética , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Ascomicetos/patogenicidad , Vías Biosintéticas/genética , Brassica napus/genética , Brassica napus/microbiología , Simulación por Computador , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Recombinación Genética/genética , Metabolismo Secundario/genética , Telómero/genética
2.
Biochemistry ; 51(25): 5198-211, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22657152

RESUMEN

ATP citrate lyase (ACL) catalyzes an ATP-dependent biosynthetic reaction which produces acetyl-coenzyme A and oxaloacetate from citrate and coenzyme A (CoA). Studies were performed with recombinant human ACL to ascertain the nature of the catalytic phosphorylation that initiates the ACL reaction and the identity of the active site residues involved. Inactivation of ACL by treatment with diethylpyrocarbonate suggested the catalytic role of an active site histidine (i.e., His760), which was proposed to form a phosphohistidine species during catalysis. The pH-dependence of the pre-steady-state phosphorylation of ACL with [γ-(33)P]-ATP revealed an ionizable group with a pK(a) value of ~7.5, which must be unprotonated for the catalytic phosphorylation of ACL to occur. Mutagenesis of His760 to an alanine results in inactivation of the biosynthetic reaction of ACL, in good agreement with the involvement of a catalytic histidine. The nature of the formation of the phospho-ACL was further investigated by positional isotope exchange using [γ-(18)O(4)]-ATP. The ß,γ-bridge to nonbridge positional isotope exchange rate of [γ-(18)O(4)]-ATP achieved its maximal rate of 14 s(-1) in the absence of citrate and CoA. This rate decreased to 5 s(-1) when citrate was added, and was found to be 10 s(-1) when both citrate and CoA were present. The rapid positional isotope exchange rates indicated the presence of one or more catalytically relevant, highly reversible phosphorylated intermediates. Steady-state measurements in the absence of citrate and CoA showed that MgADP was produced by both wild type and H760A forms of ACL, with rates at three magnitudes lower than that of k(cat) for the full biosynthetic reaction. The ATPase activity of ACL, along with the small yet significant positional isotope exchange rate observed in H760A mutant ACL (~150 fold less than wild type), collectively suggested the presence of a second, albeit unproductive, phosphoryl transfer in ACL. Mathematical analysis and computational simulation suggested that the desorption of MgADP at a rate of ~7 s(-1) was the rate-limiting step in the biosynthesis of AcCoA and oxaloacetate.


Asunto(s)
ATP Citrato (pro-S)-Liasa/química , ATP Citrato (pro-S)-Liasa/farmacocinética , ATP Citrato (pro-S)-Liasa/genética , Acetilcoenzima A/biosíntesis , Biocatálisis , Dominio Catalítico/genética , Secuencia Conservada , Medición de Intercambio de Deuterio , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Mutación , Ácido Oxaloacético/metabolismo , Fosforilación
3.
NPJ Microgravity ; 8(1): 9, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383182

RESUMEN

Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.

4.
Protein Expr Purif ; 65(2): 251-60, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297698

RESUMEN

We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6xHis-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni-NTA-agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6xHis-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni-NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.


Asunto(s)
Quimiocinas/biosíntesis , Quimiocinas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Quimiocinas/aislamiento & purificación , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidación-Reducción , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas Recombinantes de Fusión/aislamiento & purificación
5.
PLoS One ; 13(12): e0207140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30540745

RESUMEN

Atonal homolog 1 (Atoh1) is a basic helix-loop-helix 9 (bHLH) transcription factor acting downstream of Notch and is required for the differentiation of sensory hair cells in the inner ear and the specification of secretory cells during the intestinal crypt cell regeneration. Motivated by the observations that the upregulation of Atoh1 gene expression, through genetic manipulation or pharmacological inhibition of Notch signaling (e.g. γ-secretase inhibitors, GSIs), induces ectopic hair cell growth in the cochlea of the inner ear and partially restores hearing after injuries in experimental models, we decided to identify small molecule modulators of the Notch-Atoh1 pathway, which could potentially regenerate hair cells. However, the lack of cellular models of the inner ear has precluded the screening and characterization of such modulators. Here we report using a colon cancer cell line LS-174T, which displays Notch inhibition-dependent Atoh1 expression as a surrogate cellular model to screen for inducers of Atoh1 expression. We designed an Atoh1 promoter-driven luciferase assay to screen a target-annotated library of ~6000 compounds. We further developed a medium throughput, real-time quantitative RT-PCR assay measuring the endogenous Atoh1 gene expression to confirm the hits and eliminate false positives from the reporter-based screen. This strategy allowed us to successfully recover GSIs of known chemotypes. This LS-174T cell-based assay directly measures Atoh1 gene expression induced through Notch-Hes1 inhibition, and therefore offers an opportunity to identify novel cellular modulators along the Notch-Atoh1 pathway.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores Notch/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Benzodiazepinas/farmacología , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Microscopía Fluorescente , Regiones Promotoras Genéticas , Receptores Notch/antagonistas & inhibidores , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
7.
Nat Commun ; 8: 16081, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714473

RESUMEN

The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Biblioteca de Genes , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Staphylococcus aureus/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Evaluación Preclínica de Medicamentos , Terapia Molecular Dirigida , Mycobacterium tuberculosis/metabolismo , Staphylococcus aureus/metabolismo
8.
Assay Drug Dev Technol ; 11(5): 308-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23772552

RESUMEN

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK1201TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC50 values of 12.5 µM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Fluorescencia/métodos , Sumoilación/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Sitios de Unión , Unión Proteica , Proteínas Represoras
9.
Assay Drug Dev Technol ; 10(6): 514-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22574653

RESUMEN

Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.


Asunto(s)
Prueba de Complementación Genética/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Luciferasas/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Algoritmos , Automatización , Recuento de Células , Clonación Molecular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Medios de Cultivo , Citomegalovirus/genética , Interpretación Estadística de Datos , Dimetilsulfóxido/farmacología , Vectores Genéticos , Células HEK293 , Humanos , Factor 2 Relacionado con NF-E2/agonistas , Reacción en Cadena en Tiempo Real de la Polimerasa , Bibliotecas de Moléculas Pequeñas , Transducción Genética
10.
Biochem Biophys Res Commun ; 358(1): 145-9, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17475216

RESUMEN

Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.


Asunto(s)
Venenos Elapídicos/metabolismo , Péptidos Natriuréticos/metabolismo , Péptidos/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular , Unión Proteica , Ensayo de Unión Radioligante , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA