Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2410995121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39361653

RESUMEN

Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.


Asunto(s)
Acetato CoA Ligasa , Aldehído Oxidorreductasas , Microscopía por Crioelectrón , Metano , Methanosarcina , Complejos Multienzimáticos , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Microscopía por Crioelectrón/métodos , Methanosarcina/enzimología , Methanosarcina/metabolismo , Metano/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Monóxido de Carbono/metabolismo , Modelos Moleculares
2.
J Bacteriol ; 202(20)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967909

RESUMEN

Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea and is the only widespread human pathogen that contains a complete set of genes encoding the Wood-Ljungdahl pathway (WLP). In acetogenic bacteria, synthesis of acetate from 2 CO2 molecules by the WLP functions as a terminal electron accepting pathway; however, C. difficile contains various other reductive pathways, including a heavy reliance on Stickland reactions, which questions the role of the WLP in this bacterium. In rich medium containing high levels of electron acceptor substrates, only trace levels of key WLP enzymes were found; therefore, conditions were developed to adapt C. difficile to grow in the absence of amino acid Stickland acceptors. Growth conditions were identified that produce the highest levels of WLP activity, determined by Western blot analyses of the central component acetyl coenzyme A synthase (AcsB) and assays of other WLP enzymes. Fermentation substrate and product analyses, enzyme assays of cell extracts, and characterization of a ΔacsB mutant demonstrated that the WLP functions to dispose of metabolically generated reducing equivalents. While WLP activity in C. difficile does not reach the levels seen in classical acetogens, coupling of the WLP to butyrate formation provides a highly efficient system for regeneration of NAD+ "acetobutyrogenesis," requiring only low flux through the pathways to support efficient ATP production from glucose oxidation. Additional insights redefine the amino acid requirements in C. difficile, explore the relationship of the WLP to toxin production, and provide a rationale for colocalization of genes involved in glycine synthesis and cleavage within the WLP operon.IMPORTANCEClostridium difficile is an anaerobic, multidrug-resistant, toxin-producing pathogen with major health impacts worldwide. It is the only widespread pathogen harboring a complete set of Wood-Ljungdahl pathway (WLP) genes; however, the role of the WLP in C. difficile is poorly understood. In other anaerobic bacteria and archaea, the WLP can operate in one direction to convert CO2 to acetic acid for biosynthesis or in either direction for energy conservation. Here, conditions are defined in which WLP levels in C. difficile increase markedly, functioning to support metabolism of carbohydrates. Amino acid nutritional requirements were better defined, with new insight into how the WLP and butyrate pathways act in concert, contributing significantly to energy metabolism by a mechanism that may have broad physiological significance within the group of nonclassical acetogens.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Monóxido de Carbono/metabolismo , Clostridioides difficile/enzimología , Complejos Multienzimáticos/metabolismo , Acetato CoA Ligasa/metabolismo , Ácido Acético/metabolismo , Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Clostridioides difficile/genética , Redes y Vías Metabólicas , Oxidación-Reducción
3.
Biochemistry ; 52(10): 1705-16, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23394607

RESUMEN

Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO and CH3 units at a unique Ni-Fe cluster, the A cluster, to form an acetyl-Ni intermediate that subsequently reacts with CoA to produce acetyl-CoA. ACS is a component of the multienzyme complex acetyl-CoA decarbonylase/synthase (ACDS) in Archaea and CO dehydrogenase/ACS (CODH/ACS) in bacteria; in both systems, intraprotein CO channeling takes place between the CODH and ACS active sites. Previous studies indicated that protein conformational changes control the chemical reactivity of the A cluster and suggested the involvement of a conserved Phe residue that moves concomitantly into and out of the coordination environment of Ni. Herein, steady-state rate measurements in which both CO and CH3-corrinoid are varied, and rapid methylation reactions of the ACDS ß subunit, measured by stopped-flow methods, provide a kinetic model for acetyl-CoA synthesis that includes a description of the inhibitory effects of CO explained by competition of CO and CH3 for the same form of the enzyme. Electron paramagnetic resonance titrations revealed that the formation of a paramagnetic Ni(+)-CO species does not match the kinetics of CO interaction as a substrate but instead correlates well with an inhibited state of the enzyme, which requires revision of previous models that postulate that this species is an intermediate. Characterization of the ß subunit F195A variant showed markedly increased substrate reactivity with CO, which provides biochemical functional evidence of steric shielding of the CO substrate interaction site by the phenyl group side chain. The phenyl group also likely enhances the nucleophilicity of the Ni center to facilitate CH3 group transfer. A model was developed for how the catalytic properties of the A cluster are optimized by linking conformational changes to a repositionable aromatic shield able to modulate the nucleophilicity of Ni, sterically select the most productive order of substrate addition, and overcome intrinsic inhibition by CO.


Asunto(s)
Monóxido de Carbono/metabolismo , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/genética , Secuencia Conservada , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Methanosarcina/enzimología , Methanosarcina/genética , Modelos Moleculares , Moorella/enzimología , Moorella/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Níquel/metabolismo , Fenilalanina/química , Conformación Proteica , Subunidades de Proteína
4.
J Inorg Biochem ; 240: 112098, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36580832

RESUMEN

Acetyl-CoA synthase (ACS) is a central enzyme in the carbon and energy metabolism of certain anaerobic species of bacteria and archaea that catalyzes the direct synthesis and cleavage of the acetyl CC bond of acetyl-CoA by an unusual enzymatic mechanism of special interest for its use of organonickel intermediates. An Fe4S4 cluster associated with a proximal, reactive Nip and distal spectator Nid comprise the active site metal complex, known as the A cluster. Experimental and theoretical methods have uncovered much about the ACS mechanism, but have also opened new unanswered questions about the structure and reactivity of the A cluster in various intermediate forms. Here we report a method for large scale isolation of ACS with its A cluster in the acetylated state. Isolated acetyl-ACS and the two-electron reduced ACS, produced by acetyl-ACS reaction with CoA, were characterized by UV-visible and EPR spectroscopy. Reactivity with electron acceptors provided an assessment of the apparent Em for two-electron reduction of the A cluster. The results help to distinguish between alternative electronic states of the reduced cluster, provide evidence for a role of the Fe/S cluster in catalysis, and offer an explanation of why one-electron reductive activation is observed for a reaction cycle involving 2-electron chemistry.


Asunto(s)
Bacterias , Electrones , Acetilcoenzima A , Bacterias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Archaea , Óxido Nítrico Sintasa , Monóxido de Carbono/química
5.
J Biol Chem ; 285(20): 15450-15463, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20202935

RESUMEN

Direct synthesis and cleavage of acetyl-CoA are carried out by the bifunctional CO dehydrogenase/acetyl-CoA synthase enzyme in anaerobic bacteria and by the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex in Archaea. In both systems, a nickel- and Fe/S-containing active site metal center, the A cluster, catalyzes acetyl C-C bond formation/breakdown. Carbonyl group exchange of [1-(14)C]acetyl-CoA with unlabeled CO, a hallmark of CODH/ACS, is weakly active in ACDS, and exchange with CO(2) was up to 350 times faster, indicating tight coupling of CO release at the A cluster to CO oxidation to CO(2) at the C cluster in CO dehydrogenase. The basis for tight coupling was investigated by analysis of three recombinant A cluster proteins, ACDS beta subunit from Methanosarcina thermophila, acetyl-CoA synthase of Carboxydothermus hydrogenoformans (ACS(Ch)), and truncated ACS(Ch) lacking its 317-amino acid N-terminal domain. A comparison of acetyl-CoA synthesis kinetics, CO exchange, acetyltransferase, and A cluster Ni(+)-CO EPR characteristics demonstrated a direct role of the ACS N-terminal domain in promoting acetyl C-C bond fragmentation. Protein conformational changes, related to "open/closed" states previously identified crystallographically, were indicated to have direct effects on the coordination geometry and stability of the A cluster Ni(2+)-acetyl intermediate, controlling Ni(2+)-acetyl fragmentation and Ni(2+)(CO)(CH(3)) condensation. EPR spectral changes likely reflect variations in the Ni(+)-CO equatorial coordination environment in closed buried hydrophobic and open solvent-exposed states. The involvement of subunit-subunit interactions in ACDS, versus interdomain contacts in ACS, ensures that CO is not released from the ACDS beta subunit in the absence of appropriate interactions with the alpha(2)epsilon(2) CO dehydrogenase component. The resultant high efficiency CO transfer explains the low rate of CO exchange relative to CO(2).


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Methanosarcina/enzimología , Complejos Multienzimáticos/metabolismo , Aldehído Oxidorreductasas/química , Monóxido de Carbono/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Complejos Multienzimáticos/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Trends Biochem Sci ; 28(5): 221-4, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12765830

RESUMEN

The structure of carbon monoxide dehydrogenase/acetyl-coenzyme A synthase (CODH/ACS), a central enzyme in the anaerobic metabolism of acetyl-coenzyme A (acetyl-CoA), has been solved to a resolution of 2.2A. The active-site metal cluster responsible for catalyzing acetyl C-C bond synthesis and cleavage, designated the A center, was identified as an Fe(4)S(4) iron sulfur cluster with one of its cysteine thiolates acting as a bridge to an adjacent binuclear metal site. Nickel was found at one position in the binuclear site and the other metal was indicated to be copper - a surprising result, implying a previously unrecognized role for copper. Details of the A center provided new insight into the unusual organometallic mechanism of acetyl C-C bond formation and cleavage, with substantial conformational changes indicated for binding of the large methylcorrinoid protein substrate, and a unique intramolecular channel acting to contain carbon monoxide within the protein and transfer it to the site needed for acetyl-CoA synthesis.


Asunto(s)
Acetatos/química , Acetatos/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Carbono/química , Carbono/metabolismo , Metales/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Anaerobiosis , Sitios de Unión , Oxígeno/metabolismo
7.
Biochemistry ; 47(20): 5544-55, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18442256

RESUMEN

Acetyl-CoA decarbonylase/synthase (ACDS) is a multienzyme complex found in methanogens and certain other Archaea that carries out the overall synthesis and cleavage of the acetyl C-C and C-S bonds of acetyl-CoA. The reaction is involved both in the autotrophic fixation of carbon and in the process of methanogenesis from acetate, and takes place at a unique active site metal center known as the A cluster, located on the beta subunit of the ACDS complex and composed of a binuclear Ni-Ni site bridged by a cysteine thiolate to an Fe4S4 center. In this work, a high rate of acetyl-CoA synthesis was achieved with the recombinant ACDS beta subunit by use of methylcobinamide as an appropriate mimic of the physiological base-off corrinoid substrate. The redox dependence of acetyl-CoA synthesis exhibited one-electron Nernst behavior, and the effects of pH on the observed midpoint potential indicated that reductive activation of the A cluster also involves protonation. Initial burst kinetic studies indicated the formation of stoichiometric amounts of an A cluster-acetyl adduct, further supported by direct chromatographic isolation of an active enzyme-acetyl species. Titration experiments indicated that two electrons are required for activation of the enzyme in the process of forming the enzyme-acetyl intermediate. The results also established that the A cluster-acetyl species undergoes reductive elimination of the acetyl group with the simultaneous release of two, low potential electron equivalents. Thus, the one-electron Nernst behavior can be interpreted as the sum of two separate, low potential, one-electron steps. The results tend to exclude reaction mechanisms involving either one- or three-electron reduced forms of the A cluster as immediate precursors to the acetyl species. A scheme involving a [Fe4S4]1+-Ni1+ species is favored over a [Fe4S4]2+-Ni0 form. The role of proton uptake in the possible formation of a Ni2+-hydride intermediate is also discussed. Trapping of electrons during the formation of the A cluster-acetyl species from substrates CO and methylcobinamide was found to be highly favorable, thus presenting a means for extensive activation of the enzyme under otherwise nonpermissive physiological redox potentials.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Electrones , Methanosarcina/metabolismo , Complejos Multienzimáticos/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/aislamiento & purificación , Catálisis , Activación Enzimática , Methanosarcina/genética , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Oxidación-Reducción , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
8.
Methods Enzymol ; 494: 189-217, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21402216

RESUMEN

The nickel- and iron-containing enzyme acetyl-CoA synthase (ACS) catalyzes de novo synthesis as well as overall cleavage of acetyl-CoA in acetogens, various other anaerobic bacteria, methanogens, and other archaea. The enzyme contains a unique active site metal cluster, designated the A cluster, that consists of a binuclear Ni-Ni center bridged to an [Fe(4)S(4)] cluster. In bacteria, ACS is tightly associated with CO dehydrogenase to form the bifunctional heterotetrameric enzyme CODH/ACS, whereas in archaea, ACS is a component of the large multienzyme complex acetyl-CoA decarbonylase/synthase (ACDS), which comprises five different subunits that make up the subcomponent proteins ACS, CODH, and a corrinoid enzyme. Characteristic properties of ACS are discussed, and key methods are described for analysis of the enzyme's multiple redox-dependent activities, including overall acetyl-CoA synthesis, acetyltransferase, and an isotopic exchange reaction between the carbonyl group of acetyl-CoA and CO. Systematic measurement of these activities, applied to different ACS protein forms, provides insight into the ACS catalytic mechanism and physiological functions in both CODH/ACS and ACDS systems.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Archaea/enzimología , Bacterias/enzimología , Cromatografía Líquida de Alta Presión , Modelos Biológicos
9.
Arch Microbiol ; 184(1): 32-40, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16044263

RESUMEN

Methanogens growing on C-1 substrates synthesize 2-carbon acetyl groups in the form of acetyl-CoA for carbon assimilation using the multienzyme complex acetyl-CoA decarbonylase/synthase (ACDS) which contains five different subunits encoded within an operon. In species growing on acetate ACDS also functions to cleave the acetate C-C bond for energy production by methanogenesis. A number of species of Methanosarcina that are capable of growth on either C-1 compounds or acetate contain two separate ACDS operons, and questions have been raised about whether or not these operons play separate roles in acetate synthesis and cleavage. Methanosarcina thermophila genomic DNA was analyzed for the presence of two ACDS operons by PCR amplifications with different primer pairs, restriction enzyme analyses, DNA sequencing and Southern blot analyses. A single ACDS operon was identified and characterized, with no evidence for more than one. MALDI mass spectrometric analyses were carried out on ACDS preparations from methanol- and acetate-grown cells. Peptide fragmentation patterns showed that the same ACDS subunits were present regardless of growth conditions. The evidence indicates that a single form of ACDS is used both for acetate cleavage during growth on acetate and for acetate synthesis during growth on C-1 substrates.


Asunto(s)
Acetilcoenzima A/metabolismo , Aldehído Oxidorreductasas/metabolismo , Methanosarcina/metabolismo , Complejos Multienzimáticos/metabolismo , Operón/genética , Aldehído Oxidorreductasas/química , Secuencia de Aminoácidos , Methanosarcina/enzimología , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Análisis de Secuencia , Análisis Espectral/métodos
10.
J Biol Chem ; 278(8): 6101-10, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12464601

RESUMEN

The acetyl-CoA decarbonylase/synthase (ACDS) complex catalyzes the central reaction of acetyl C-C bond cleavage in methanogens growing on acetate and is also responsible for synthesis of acetyl units during growth on C-1 substrates. The ACDS beta subunit contains nickel and an Fe/S center and reacts with acetyl-CoA forming an acetyl-enzyme intermediate presumably directly involved in acetyl C-C bond activation. To investigate the role of nickel in this process two forms of the Methanosarcina thermophila beta subunit were overexpressed in anaerobically grown Escherichia coli. Both contained an Fe/S center but lacked nickel and were inactive in acetyl-enzyme formation in redox-dependent acetyltransferase assays. However, high activity developed during incubation with NiCl(2). The native and nickel-reconstituted proteins both contained iron and nickel in a 2:1 ratio, with insignificant levels of other metals, including copper. Binding of nickel elicited marked changes in the UV-visible spectrum, with intense charge transfer bands indicating multiple thiolate ligation to nickel. The kinetics of nickel incorporation matched the time course for enzyme activation. Other divalent metal ions could not substitute for nickel in yielding catalytic activity. Acetyl-CoA was formed in reactions with CoA, CO, and methylcobalamin, directly demonstrating C-C bond activation by the beta subunit in the absence of other ACDS subunits. Nickel was indispensable in this process too and was needed to form a characteristic EPR-detectable enzyme-carbonyl adduct in reactions with CO. In contrast to enzyme activation, EPR signal formation did not require addition of reducing agent, indicating indirect catalytic involvement of the paramagnetic species. Site-directed mutagenesis indicated that Cys-278 and Cys-280 coordinate nickel, with Cys-189 essential for Fe/S cluster formation. The results are consistent with an Ni(2)[Fe(4)S(4)] arrangement at the active site. A mechanism for C-C bond activation is proposed that includes a specific role for the Fe(4)S(4) center and accounts for the absolute requirement for nickel.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Euryarchaeota/enzimología , Complejos Multienzimáticos/metabolismo , Níquel/metabolismo , Aldehído Oxidorreductasas/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Clonación Molecular , Secuencia Conservada , Escherichia coli/genética , Histidina , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Cinética , Metaloproteínas/química , Metaloproteínas/metabolismo , Methanosarcina/enzimología , Complejos Multienzimáticos/química , Mutagénesis Sitio-Dirigida , Prolina , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Espectrofotometría , Triptófano
11.
J Am Chem Soc ; 125(50): 15343-51, 2003 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-14664578

RESUMEN

The acetyl-CoA decarbonylase/synthase (ACDS) complex catalyzes the cleavage of acetyl-CoA in methanogens that metabolize acetate to CO(2) and CH(4), and also carries out acetyl-CoA synthesis during growth on one-carbon substrates. The ACDS complex contains five subunits, among which beta possesses an Ni-Fe-S active-site metal cluster, the A-cluster, at which reaction with acetyl-CoA takes place, generating an acetyl-enzyme species poised for C-C bond cleavage. We have used Ni and Fe K fluorescence XANES and EXAFS analyses to characterize these metals in the ACDS beta subunit, expressed as a C-terminally shortened form. Fe XANES and EXAFS confirmed the presence of an [Fe(4)S(4)] cluster, with typical Fe-S and Fe-Fe distances of 2.3 and 2.7 A respectively. An Fe:Ni ratio of approximately 2:1 was found by Kalphabeta fluorescence analysis, indicating 2 Ni per [Fe(4)S(4)]. Ni XANES simulations were consistent with two distinct Ni sites in cluster A, and the observed spectrum could be modeled as the sum of separate square planar and tetrahedral Ni sites. Treatment of the beta subunit with Ti(3+) citrate resulted in shifts to lower energy, implying significant reduction of the [Fe(4)S(4)] center, along with conversion of a smaller fraction of Ni(II) to Ni(I). Reaction with CO in the presence of Ti(3+) citrate generated a unique Ni XANES spectrum, while effects on the Fe-edge were not very different from the reaction with Ti(3+) alone. Ni EXAFS revealed an average Ni coordination of 2.5 S at 2.19 A and 1.5 N/O at 1.89 A. A distinct feature at approximately 2.95 A most likely results from Ni-Ni interaction. The methanogen beta subunit A-cluster is proposed to consist of an [Fe(4)S(4)] cluster bridged to an Ni-Ni center with one Ni in square planar geometry coordinated by 2 S + 2 N and the other approximately tetrahedral with 3 S + 1 N/O ligands. The electronic consequences of two distinct Ni geometries are discussed.


Asunto(s)
Aldehído Oxidorreductasas/química , Methanosarcina/enzimología , Complejos Multienzimáticos/química , Dicroismo Circular , Simulación por Computador , Hierro/química , Modelos Moleculares , Níquel/química , Subunidades de Proteína , Análisis Espectral/métodos
12.
J Am Chem Soc ; 126(1): 88-95, 2004 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-14709073

RESUMEN

The 5-subunit-containing acetyl-CoA decarbonylase/synthase (ACDS) complex plays an important role in methanogenic Archaea that convert acetate to methane, by catalyzing the central reaction of acetate C-C bond cleavage in which acetyl-CoA serves as the acetyl donor substrate reacting at the ACDS beta subunit active site. The properties of Ni in the active site A-cluster in the ACDS beta subunit from Methanosarcina thermophila were investigated. A recombinant, C-terminally truncated form of the beta subunit was employed, which mimics the native subunit previously isolated from the ACDS complex, and contains an A-cluster composed of an [Fe(4)S(4)] center bridged to a binuclear Ni-Ni site. The electronic structures of these two Ni were studied using L-edge absorption and X-ray magnetic circular dichroism (XMCD) spectroscopy. The L-edge absorption data provided evidence for two distinct Ni species in the as-isolated enzyme, one with low-spin Ni(II) and the other with high-spin Ni(II). XMCD spectroscopy confirmed that the species producing the high-spin signal was paramagnetic. Upon treatment with Ti(3+) citrate, an additional Ni species emerged, which was assigned to Ni(I). By contrast, CO treatment of the reduced enzyme converted nearly all of the Ni in the sample to low-spin Ni(II). The results implicate reaction of a high-spin tetrahedral Ni site with CO to form an enzyme-CO adduct transformed to a low-spin Ni(II) state. These findings are discussed in relation to the mechanism of C-C bond activation, in connection with the model of the beta subunit A-cluster developed from companion Ni and Fe K edge, XANES, and EXAFS studies.


Asunto(s)
Aldehído Oxidorreductasas/química , Methanosarcina/enzimología , Complejos Multienzimáticos/química , Níquel/química , Aldehído Oxidorreductasas/metabolismo , Sitios de Unión , Dicroismo Circular/métodos , Complejos Multienzimáticos/metabolismo , Níquel/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Espectrometría por Rayos X/métodos
13.
Genome Res ; 12(4): 532-42, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11932238

RESUMEN

Methanogenesis, the biological production of methane, plays a pivotal role in the global carbon cycle and contributes significantly to global warming. The majority of methane in nature is derived from acetate. Here we report the complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A. Methanosarcineae are the most metabolically diverse methanogens, thrive in a broad range of environments, and are unique among the Archaea in forming complex multicellular structures. This diversity is reflected in the genome of M. acetivorans. At 5,751,492 base pairs it is by far the largest known archaeal genome. The 4524 open reading frames code for a strikingly wide and unanticipated variety of metabolic and cellular capabilities. The presence of novel methyltransferases indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth. Although motility has not been observed in any Methanosarcineae, a flagellin gene cluster and two complete chemotaxis gene clusters were identified. The availability of genetic methods, coupled with its physiological and metabolic diversity, makes M. acetivorans a powerful model organism for the study of archaeal biology. [Sequence, data, annotations and analyses are available at http://www-genome.wi.mit.edu/.]


Asunto(s)
Variación Genética , Genoma Arqueal , Methanosarcina/genética , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología , Monóxido de Carbono/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Euryarchaeota/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Methanosarcina/fisiología , Datos de Secuencia Molecular , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Oxígeno/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/genética , Biosíntesis de Proteínas/fisiología , Origen de Réplica/genética , Origen de Réplica/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA