Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Alcohol Clin Exp Res ; 46(10): 1772-1782, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36239713

RESUMEN

Front-loading is a drinking pattern in which alcohol intake is skewed toward the onset of reward access. This phenomenon has been reported across several different alcohol self-administration protocols in a wide variety of species, including humans. The hypothesis of the current review is that front-loading emerges in response to the rewarding effects of alcohol and can be used to measure the motivation to consume alcohol. Alternative or additional hypotheses that we consider and contrast with the main hypothesis are that: (1) front-loading is directed at overcoming behavioral and/or metabolic tolerance and (2) front-loading is driven by negative reinforcement. Evidence for each of these explanations is reviewed. We also consider how front-loading has been evaluated statistically in previous research and make recommendations for defining this intake pattern in future studies. Because front-loading may predict long-term maladaptive alcohol drinking patterns leading to the development of alcohol use disorder (AUD), several future directions are proposed to elucidate the relationship between front-loading and AUD.


Asunto(s)
Alcoholismo , Recompensa , Humanos , Consumo de Bebidas Alcohólicas/epidemiología , Alcoholismo/epidemiología , Etanol/farmacología , Motivación
2.
Alcohol Clin Exp Res ; 44(9): 1717-1727, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32865852

RESUMEN

BACKGROUND: Beyond yielding high blood ethanol (EtOH) concentrations (BECs), binge-drinking models allow examination of drinking patterns which may be associated with EtOH's rewarding effects, including front-loading and consummatory successive negative contrast (cSNC), a decrease in intake when only water is available to subjects expecting EtOH. The goals of the current study were to broaden our understanding of these reward-related behaviors during binge EtOH access in high alcohol-preferring (HAP) replicate lines (HAP2 and HAP3) of mice selectively bred to prefer alcohol. We hypothesized that both lines would show evidence of front-loading during binge EtOH access and that we would find a cSNC effect in groups where EtOH was replaced with water, as these results have been shown previously in HAP1 mice. METHODS: HAP replicate 2 and replicate 3 female and male mice were given 2 hours of EtOH or water access in the home cage for 15 consecutive days using "drinking in the dark" (DID) procedures. Mice received the same fluid (either 20% unsweetened EtOH or water) for the first 14 days. However, on the 15th day, half of the mice from these 2 groups were provided with the opposite assigned fluid (EtOH groups received water and vice versa). Intake was measured in 1-minute bins using specialized sipper tubes, which allowed within-session analyses of binge-drinking patterns. RESULTS: EtOH front-loading was observed in both replicates. HAP3 mice displayed front-loading on the first day of EtOH access, whereas front-loading developed following alcohol experience in HAP2 mice, which may suggest differences in initial sensitivity to EtOH reward. Consummatory SNC, which manifests as lower water intake in mice expecting EtOH as compared to mice expecting water, was observed in both replicates. CONCLUSIONS: These findings increase confidence that defined changes in home cage consummatory behavior are driven by the incentive value of EtOH. The presence of cSNC across HAP replicates indicates that this reaction to loss of reward is genetically mediated, which suggests that there is a biological mechanism that might be targeted.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Conducta Animal , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta de Ingestión de Líquido , Etanol/administración & dosificación , Recompensa , Animales , Agua Potable , Femenino , Masculino , Ratones , Ratones Endogámicos , Autoadministración
3.
Alcohol Clin Exp Res ; 43(11): 2421-2430, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31509609

RESUMEN

BACKGROUND: Alcohol consumption despite aversive consequences is often a key component of an alcoholism diagnosis. Free-choice alcohol consumption despite bitter quinine adulteration in rodents has been seen following several months of free-choice drinking, but there has been little study of whether prolonged access to other palatable substances such as saccharin yields quinine resistance. Selectively bred crossed high-alcohol-preferring (cHAP) mice average blood alcohol levels of over 250 mg/dl during free-choice access, considerably higher than other models. We hypothesized that higher intakes would yield more rapid development of quinine-resistant alcohol (QRA) drinking and quinine-resistant saccharin (QRS) drinking. METHODS: All experiments used male and female cHAP mice. Experiment 1 compared mice with either 0 or 5 weeks of alcohol drinking history, testing varying (0.032, 0.10, 0.32 g/l) quinine concentrations in ethanol. Experiment 2 examined whether innate QR may exist, comparing animals with a 1 or zero day of drinking history. Experiment 3 examined the effect of varying histories (0, 2, or 5 weeks) of free-choice 10% alcohol drinking on QR alcohol consumption at high quinine concentrations. Finally, Experiment 4 investigated the development of QRS drinking. RESULTS: We found that we could not detect a history effect in commonly used quinine concentrations, indicating that cHAP mice are innately quinine resistant to 0.10 g/l quinine. However, we were able to determine that a 2-week drinking history was sufficient to induce QRA drinking in cHAP mice at extremely high quinine concentrations (0.74 and 0.32 g/l). However, the history effect was specific to QRA, a saccharin drinking history, did not yield QRS drinking. CONCLUSIONS: These data suggest that an alcohol drinking history induces maladaptive behaviors, such as drinking in spite of negative consequences, a pattern not seen with saccharin. Furthermore, a strong genetic predisposition to drink may promote an innate aversion resistance compared with commonly used inbred strains.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Quinina/farmacología , Sacarina/farmacología , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
4.
Alcohol Clin Exp Res ; 42(2): 432-443, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29144544

RESUMEN

BACKGROUND: Studies show that repeated nicotine use associates with high alcohol consumption in humans and that nicotine exposure sometimes increases alcohol consumption in animal models. However, the relative roles of genetic predisposition to high alcohol consumption, the alcohol drinking patterns, and the timing of nicotine exposure both with respect to alcohol drinking and developmental stage remain unclear. The studies here manipulated all these variables, using mice selectively bred for differences in free-choice (FC) alcohol consumption to elucidate the role of genetics and nicotine exposure in alcohol consumption behaviors. METHODS: In Experiments 1 and 2, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections immediately before binge-like (drinking-in-the-dark; Experiment 1) or during FC alcohol access (Experiment 2) on these alcohol drinking behaviors (immediately after injections and during re-exposure to alcohol access 14 days later) in adult high- (HAP2) and low-alcohol-preferring (LAP2) female mice (co-exposure model). In Experiments 3 and 4, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections 14 days prior to binge-like and FC alcohol access on these alcohol drinking behaviors in adolescent HAP2 and LAP2 female mice (Experiment 3) or adult HAP2 female mice (Experiment 4). RESULTS: In Experiment 1, we found that repeated nicotine (0.5 and 1.5 mg/kg) and alcohol co-exposure significantly increased binge-like drinking behavior in HAP2 but not LAP2 mice during the re-exposure phase after a 14-day abstinence period. In Experiment 2, 1.5 mg/kg nicotine injections significantly reduced FC alcohol intake and preference in the third hour postinjection in HAP2 but not LAP2 mice. No significant effects of nicotine treatment on binge-like or FC alcohol drinking were observed in Experiments 3 and 4. CONCLUSIONS: These results show that the temporal parameters of nicotine and alcohol exposure, pattern of alcohol access, and genetic predisposition for alcohol preference influence nicotine's effects on alcohol consumption. These findings in selectively bred mice suggest that humans with a genetic history of alcohol use disorders may be more vulnerable to develop nicotine and alcohol co-use disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Conducta Animal/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas/genética , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Animales , Femenino , Predisposición Genética a la Enfermedad , Ratones , Modelos Animales , Selección Artificial
5.
Alcohol Alcohol ; 52(6): 629-637, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036399

RESUMEN

AIMS: This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). METHODS: Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. RESULTS: cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. CONCLUSIONS: Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. SHORT SUMMARY: cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/genética , Modelos Animales de Enfermedad , Etanol/toxicidad , Hepatopatías Alcohólicas/genética , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Animales , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/patología , Etanol/administración & dosificación , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Estados Unidos
6.
Alcohol Clin Exp Res ; 40(7): 1577-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27293152

RESUMEN

BACKGROUND: Negative outcomes of alcoholism are progressively more severe as the duration of problem of alcohol use increases. Additionally, alcoholics demonstrate tendencies to neglect negative consequences associated with drinking and/or to choose to drink in the immediate presence of warning factors against drinking. The recently derived crossed high-alcohol-preferring (cHAP) mice, which volitionally drink to heavier intoxication (as assessed by blood ethanol [EtOH] concentration) than other alcohol-preferring populations, as well as spontaneously escalating their intake, may be a candidate to explore mechanisms underlying long-term excessive drinking. Here, we hypothesized that an extended drinking history would reduce the ability of 2 manipulations (forced abstinence [FA] and conditioned taste aversion [CTA]) to attenuate drinking. METHODS: Experiment 1 examined differences between groups drinking for either 14 or 35 days, half of each subjected to 7 days of FA and half not, to characterize the potential changes in postabstinence drinking resulting from an extended drinking history. Experiment 2 used a CTA procedure to assess stimulus specificity of the ability of an aversive flavorant to decrease alcohol consumption. Experiment 3 used this taste aversion procedure to assess differences among groups drinking for 1, 14, or 35 days in their propensity to overcome this aversion when the flavorant was mixed with either EtOH or water. RESULTS: Experiment 1 demonstrated that although FA decreased alcohol consumption in mice with a 14-day drinking history, it failed to do so in mice drinking alcohol for 35 days. Experiment 2 showed that the addition of a flavorant only suppressed alcohol drinking if an aversion to the flavorant was previously established. Experiment 3 demonstrated that an extended drinking history expedited extinction of suppressed alcohol intake caused by a conditioned aversive flavor. CONCLUSIONS: These data show that a history of long-term drinking in cHAP mice attenuates the efficacy of interventions that normally reduce drinking. Analogous to alcoholics who may encounter difficulties in limiting their intake, cHAP mice with long drinking histories are relatively insensitive to both abstinence and signals of harmful consequences. We propose that the cHAP line may be a valid model for adaptations that occur following the extended heavy alcohol drinking.


Asunto(s)
Abstinencia de Alcohol/psicología , Consumo de Bebidas Alcohólicas/psicología , Reacción de Prevención/efectos de los fármacos , Animales , Agentes Aversivos/farmacología , Condicionamiento Psicológico , Extinción Psicológica/efectos de los fármacos , Femenino , Cloruro de Litio/farmacología , Masculino , Ratones , Ratones Endogámicos , Percepción del Gusto , Factores de Tiempo
7.
Addict Biol ; 20(2): 236-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24118509

RESUMEN

Approximately 30% of current drinkers in the United States drink excessively, and are referred to as problem/hazardous drinkers. These individuals, who may not meet criteria for alcohol abuse or dependence, comprise binge, heavy drinkers, or both. Given their high prevalence, interventions that reduce the risk of binge and heavy drinking have important public health implications. Impulsivity has been repeatedly associated with excessive drinking in the clinical literature. As impulsivity is correlated with, and may play a critical role in, the initiation and maintenance of excessive drinking, this behavior may be an important target for therapeutic intervention. Hence, a better understanding of pharmacological treatments capable of attenuating excessive drinking and impulsivity may markedly improve clinical outcomes. The high-alcohol-preferring (HAP) mice represent a strong rodent model to study the relationship between impulsivity and excessive alcohol drinking, as recent evidence indicates they consume high levels of alcohol throughout their active cycle and are innately impulsive. Using this model, the present study demonstrates that the triple monoamine uptake inhibitors (TUIs) amitifadine and DOV 102, 677 effectively attenuate binge drinking, heavy drinking assessed via a 24-hour free-choice assay, and impulsivity measured by the delay discounting procedure. In contrast, 3-PBC, a GABA-A α1 preferring ligand with mixed agonist-antagonist properties, attenuates excessive drinking without affecting impulsivity. These findings suggest that in HAP mice, monoamine pathways may predominate as a common mechanism underlying impulsivity and excessive drinking, while the GABAergic system may be more salient in regulating excessive drinking. We further propose that TUIs such as amitifadine and DOV 102, 677 may be used to treat the co-occurrence of impulsivity and excessive drinking.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Consumo de Bebidas Alcohólicas , Compuestos Aza/farmacología , Conducta Animal/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Inhibidores de Captación de Dopamina/farmacología , Conducta Impulsiva/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Carbolinas/farmacología , Ratones
8.
Alcohol Clin Exp Res ; 38(1): 267-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23909817

RESUMEN

BACKGROUND: Crossed high-alcohol-preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines and demonstrate blood ethanol concentrations (BECs) during free-choice drinking reminiscent of those observed in alcohol-dependent humans. In this report, we investigated the relationship between free-choice drinking, intoxication, tolerance, and sensitization in cHAP mice. We hypothesized that initially mice would become ataxic after drinking alcohol, but that increased drinking over days would be accompanied by increasing tolerance to the ataxic effects of ethanol (EtOH). METHODS: Male and female cHAP mice had free-choice access to 10% EtOH and water (E), while Water mice (W) had access to water alone. In experiment 1, the first drinking experience was monitored during the dark portion of the cycle. Once E mice reached an average intake rate of ≥1.5 g/kg/h, they, along with W mice, were tested for footslips on a balance beam, and BECs were assessed. In experiments 2, 3, and 4, after varying durations of free-choice 10% EtOH access (0, 3, 14, or 21 days), mice were challenged with 20% EtOH and tested for number of footslips on a balance beam or locomotor stimulant response. Blood was sampled for BEC determination. RESULTS: We found that cHAP mice rapidly acquire alcohol intakes that lead to ataxia. Over time, cHAP mice developed behavioral tolerance to the ataxic effects of alcohol, paralleled by escalating alcohol consumption. However, locomotor sensitization did not develop following 14 days of free-choice EtOH access. CONCLUSIONS: Overall, we observed increases in free-choice drinking with extended alcohol access paralleled by increases in functional tolerance, but not locomotor sensitization. These data support our hypothesis that escalating free-choice drinking over days in cHAP mice is driven by tolerance to alcohol's behavioral effects. These data are the first to demonstrate that escalating free-choice consumption is accompanied by increasing alcohol tolerance. In addition to buttressing the hypothesized importance of tolerance in drinking, our findings suggest that cHAP mice may be a unique, translational resource for studying tolerance as a contributor to and consequence of chronic, excessive EtOH consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Intoxicación Alcohólica/genética , Conducta de Elección/efectos de los fármacos , Etanol/administración & dosificación , Hibridación Genética , Actividad Motora/efectos de los fármacos , Consumo de Bebidas Alcohólicas/fisiopatología , Consumo de Bebidas Alcohólicas/psicología , Intoxicación Alcohólica/fisiopatología , Intoxicación Alcohólica/psicología , Animales , Conducta de Elección/fisiología , Etanol/toxicidad , Femenino , Masculino , Ratones , Actividad Motora/fisiología
9.
Alcohol ; 116: 9-19, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37838352

RESUMEN

Chronic alcohol consumption can lead to tolerance and escalation of drinking in humans and animals, but mechanisms underlying these changes are not fully characterized. Preclinical models can delineate which mechanisms are involved. The chronic intermittent ethanol exposure (CIE) procedure uses forced exposure to vaporized alcohol that elicits withdrawal and increased responding for alcohol in operant tasks in C57BL/6J inbred mice. Chronic two-bottle choice (2BC) drinking in the same strain elicits abstinent-related depression-like behavior, suggestive of allostatic changes. Selected lines such as crossed High Alcohol Preferring (cHAP) mice voluntarily drink to blood alcohol concentrations comparable to those attained in CIE and could be used to assess how alcohol affects these same endpoints without the confounds of involuntary vapor inhalation. In three experiments, we assess how 2BC drinking in cHAP mice affects abstinence-related depressive- and anxiety-like behavior, operant responding for alcohol, and binge consumption using drinking-in-the-dark (DID). We hypothesized that cHAPs with home-cage drinking experience would exhibit more depressive behavior after abstinence, increased responding for alcohol in the operant box, and increased DID intake. Of these, a drinking history increased DID intake in female cHAPs only and increased sucrose preference and intake following abstinence, but had no effects on operant responding or NSFT latency and FST immobility following forced abstinence. These results are consistent with recent findings using slice electrophysiology showing tolerance to alcohol's actions on the dorsolateral striatum following 2BC drinking in female, but not male cHAP mice. Overall, these data suggest that cHAPs may require procedures allowing rapid intoxication, such as DID, to demonstrate changes in alcohol's rewarding effects.


Asunto(s)
Consumo de Bebidas Alcohólicas , Consumo Excesivo de Bebidas Alcohólicas , Humanos , Ratones , Femenino , Animales , Ratones Endogámicos C57BL , Etanol , Ansiedad
10.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370732

RESUMEN

Frontloading is an alcohol drinking pattern where intake is skewed toward the onset of access. The goal of the current study was to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female and 31 male) mice that underwent 8 days of binge drinking using the drinking-in-the-dark (DID) model. On days 1-7, three hours into the dark cycle, mice received 20% (v/v) alcohol or water for two hours. Intake was measured in 1-minute bins using volumetric sippers, which facilitated analyses of drinking patterns. On day 8 mice were perfused 80 minutes into the DID session and brains were extracted. Brains were then processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For brain network analyses, day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a recently developed change-point analysis. Based on this analysis the groups were female frontloaders (n = 20), female non-frontloaders (n = 2), male frontloaders (n = 13) and male non-frontloaders (n = 8). There were no differences in total alcohol intake in animals that frontloaded versus those that did not. Only two female mice were characterized as non-frontloaders, thus preventing brain network analysis of this group. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and hierarchical clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (3 modules in both frontloaders and non-frontloaders) as compared to water drinkers (7 modules). In females, an opposite effect was observed. Alcohol access (9 modules for frontloaders) increased modularity as compared to water drinkers (5 modules). These results suggest sex differences in how alcohol consumption reorganizes the functional architecture of neural networks. Next, key brain regions in each network were identified. Connector hubs, which primarily facilitate communication between modules, and provincial hubs, which facilitate communication within modules, were of specific interest for their important and differing roles. In males, 4 connector hubs and 17 provincial hubs were uniquely identified in frontloaders (i.e., were brain regions that did not have this status in male non-frontloaders or water drinkers). These represented a group of hindbrain regions (e.g., locus coeruleus and the pontine gray) functionally connected to striatal/cortical regions (e.g., cortical amygdalar area) by the paraventricular nucleus of the thalamus. In females, 16 connector and 17 provincial hubs were uniquely identified which were distributed across 8 of the 9 modules in the female frontloader alcohol drinker network. Only one brain region (the nucleus raphe pontis) was a connector hub in both sexes, suggesting that frontloading in males and females may be driven by different brain regions. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females, and recruited different hub brain regions between the sexes. These results suggest that alcohol frontloading leads to a reduction in network efficiency in male mice.

11.
Alcohol Clin Exp Res ; 37(1): 141-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22725646

RESUMEN

BACKGROUND: Abuse of alcohol during adolescence continues to be a problem, and it has been shown that earlier onset of drinking predicts increased alcohol abuse problems later in life. High levels of impulsivity have been demonstrated to be characteristic of alcoholics, and impulsivity has also been shown to predict later alcohol use in teenage subjects, showing that impulsivity may precede the development of alcohol use disorders. These experiments examined adolescent drinking in a high-drinking, relatively impulsive mouse population and assessed its effects on adult drinking and adult impulsivity. METHODS: Experiment 1: Selectively bred high-alcohol preferring (HAPII) mice were given either alcohol (free-choice access) or water only for 2 weeks during middle adolescence or adulthood. All mice were given free-choice access to alcohol 30 days later, in adulthood. Experiment 2: Adolescent HAPII mice drank alcohol and water, or water alone, for 2 weeks, and were then trained to perform a delay discounting task as adults to measure impulsivity. In each experiment, effects of volitional ethanol (EtOH) consumption on later behavior were assessed. We expected adolescent alcohol exposure to increase subsequent drinking and impulsivity. RESULTS: Mice consumed significant quantities of EtOH, reaching average blood ethanol concentrations (BECs) of 142 mg/dl (adolescent) or 154 mg/dl (adult) in Experiment 1. Adolescent mice in Experiment 2 reached an average of 108 mg/dl. Mice exposed to alcohol in either adolescence or adulthood showed a transient increase in EtOH consumption, but we observed no differences in impulsivity in adult mice as a function of whether mice drank alcohol during adolescence. CONCLUSIONS: These findings indicate that HAPII mice drink intoxicating levels of alcohol during both adolescence and adulthood and that this volitional intake has long-term effects on subsequent drinking behavior. Nonetheless, this profound exposure to alcohol during adolescence does not increase impulsivity in adulthood, indicating that long-term changes in drinking are mediated by mechanisms other than impulsivity.


Asunto(s)
Consumo de Bebidas Alcohólicas , Trastornos Relacionados con Alcohol/psicología , Conducta Impulsiva , Consumo de Bebidas Alcohólicas/genética , Animales , Femenino , Masculino , Ratones
12.
Addict Biol ; 18(6): 921-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22126215

RESUMEN

Multiple lines of high alcohol-preferring (HAP) mice were selectively bred for their intake of 10% ethanol (v/v) during 24-hour daily access over a 4-week period, with the highest drinking lines exhibiting intakes in excess of 20 g/kg/day. We observed circadian drinking patterns and resulting blood ethanol concentrations (BECs) in the HAP lines. We also compared the drinking rhythms and corresponding BECs of the highest drinking HAP lines to those of the C57BL/6J (B6) inbred strain. Adult male and female crossed HAP (cHAP), HAP replicate lines 1, 2, 3 and B6 mice had free-choice access to 10% ethanol and water for 3 weeks prior to bi-hourly assessments of intake throughout the dark portion of the light-dark cycle. All HAP lines reached and maintained a rate of alcohol intake above the rate at which HAP1 mice metabolize alcohol, and BECs were consistent with this finding. Further, cHAP and HAP1 mice maintained an excessive level of intake throughout the dark portion of the cycle, accumulating mean BEC levels of 261.5 ± 18.09 and 217.9 ± 25.02 mg/dl, respectively. B6 mice drank comparatively modestly, and did not accumulate high BEC levels (53.63 + 8.15 mg/dl). Free-choice drinking demonstrated by the HAP1 and cHAP lines may provide a unique opportunity for modeling the excessive intake that often occurs in alcohol-dependent individuals, and allow for exploration of predisposing factors for excessive consumption, as well as the development of physiological, behavioral and toxicological outcomes following alcohol exposure.


Asunto(s)
Consumo de Bebidas Alcohólicas/sangre , Ritmo Circadiano , Etanol/administración & dosificación , Fotoperiodo , Autoadministración/estadística & datos numéricos , Consumo de Bebidas Alcohólicas/genética , Análisis de Varianza , Animales , Conducta de Elección/fisiología , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Agua Potable/administración & dosificación , Etanol/sangre , Femenino , Preferencias Alimentarias/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución por Sexo , Estadísticas no Paramétricas
13.
Behav Genet ; 42(2): 313-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21989731

RESUMEN

There is considerable evidence for the existence of comorbidity between alcohol-use disorders and depression in humans. One strategy to elucidate hereditary factors affecting the comorbidity of these disorders is to use genetic animal models, such as mouse lines selectively bred for voluntary ethanol consumption. We hypothesized that mice from lines that were bred for high-alcohol preference would manifest increased depression-like phenotypes compared to low-alcohol preferring mice. Mice that were bi-directionally selected and bred on the basis of their High- (HAP) or Low-Alcohol Preference (LAP) were tested in the open-field (OFT), dark-light box (DLB), forced swim (FST), and learned helplessness tests (LH). The study was conducted in two independently derived replicates. In the OFT, both HAP2 and HAP3 mice showed higher levels of general locomotion compared to LAP mice. However, only HAP2 mice spent more time in the center compared to LAP2 mice. In the DLB, there was a slightly higher anxiety-like phenotype in HAP mice. In both FST and LH, we observed higher depression-like behaviors in HAP mice compared to LAP mice, but this was limited to the Replicate 2 mice. Overall, we identified affect-related behavioral changes in mouse lines bred for high-alcohol preference. Notably, the Replicate 3 lines that showed fewer depression-like behaviors also manifest smaller differences in alcohol intake. These data suggest that there may be overlap between genes that predispose to excessive alcohol intake and those underlying affect-related behaviors in the mouse.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/epidemiología , Alcoholismo/genética , Depresión/genética , Afecto/fisiología , Animales , Conducta Animal , Comorbilidad , Depresión/epidemiología , Femenino , Masculino , Ratones , Actividad Motora/genética
14.
Addict Biol ; 17(1): 33-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21521426

RESUMEN

Genetic aspects of alcoholism have been modeled using rats selectively bred for extremes of alcohol preference and voluntary alcohol intake. These lines show similar alcohol drinking phenotypes but have different genetic and environmental backgrounds and may therefore display diverse behavioral traits as seen in human alcoholics. The multivariate concentric square field™ (MCSF) test is designed to provoke exploration and behaviors associated with risk assessment, risk taking and shelter seeking in a novel environment. The aim was to use the MCSF to characterize behavioral profiles in rat lines from selective breeding programs in the United States (P/NP, HAD1/LAD1, HAD2/LAD2), Italy (sP/sNP) and Finland (AA/ANA). The open field and elevated plus maze tests were used as reference tests. There were substantial differences within some of the pairs of selectively bred rat lines as well as between all alcohol-preferring rats. The most pronounced differences within the pairs of lines were between AA and ANA rats and between sP and sNP rats followed by intermediate differences between P and NP rats and minor differences comparing HAD and LAD rats. Among all preferring lines, P, HAD1 and HAD2 rats shared similar behavioral profiles, while AA and sP rats were quite different from each other and the others. No single trait appeared to form a common 'pathway' associated with a high alcohol drinking phenotype among all of the alcohol-preferring lines of rats. The marked behavioral differences found in the different alcohol-preferring lines may mimic the heterogeneity observed among human alcoholic subtypes.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/genética , Alcoholismo/psicología , Conducta Animal , Pruebas Neuropsicológicas/estadística & datos numéricos , Alcoholismo/complicaciones , Animales , Ansiedad/complicaciones , Ansiedad/genética , Ansiedad/psicología , Conducta de Elección , Modelos Animales de Enfermedad , Conducta Exploratoria , Conducta Impulsiva/complicaciones , Conducta Impulsiva/genética , Conducta Impulsiva/psicología , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Wistar , Asunción de Riesgos , Especificidad de la Especie , Estadísticas no Paramétricas
15.
Alcohol ; 105: 35-42, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272659

RESUMEN

A symptom of alcohol use disorder (AUD) is compulsive drinking, or drinking that persists despite negative consequences. In mice, aversion-resistant models are used to model compulsive-like drinking by pairing the response for alcohol with a footshock or by adding quinine, a bitter tastant, to the alcohol solution. crossed High Alcohol Preferring (cHAP) mice, a selectively bred line of mice that consumes pharmacologically relevant levels of alcohol, demonstrate a high level of aversion-resistance to quinine-adulterated alcohol. The current study investigated quinine-resistant and footshock-resistant responding for 10% ethanol in male and female cHAP mice with vs. without a history of alcohol exposure. cHAP mice were first trained to respond for 10% ethanol in an operant-response task. Next, mice were exposed to water or 10% ethanol for twelve 24-h sessions using a two-bottle choice procedure. Footshock-resistant ethanol responding was then tested in the operant chamber by pairing a footshock (0.35 mA) with the nose-poke response during one session. Quinine-resistant responding for alcohol was tested over five sessions (500-2500 µM quinine). Finally, footshock sensitivity was assessed using a flinch, jump, vocalize test. Alcohol exposure history did not influence responses for 10% ethanol or either measure of aversion-resistance. Further, cHAP mice were sensitive to footshock punishment but continued to respond for alcohol at all quinine concentrations. No sex differences were observed in any measure of alcohol responding, but female cHAP mice were less sensitive to footshock than males. These results replicate and extend the previous demonstration of a robust, innate resistance to quinine aversion in cHAP mice and further suggest that this tendency is not observed when footshock is used to punish drinking.


Asunto(s)
Etanol , Quinina , Femenino , Masculino , Ratones , Animales , Quinina/farmacología , Etanol/farmacología
16.
Alcohol Clin Exp Res ; 35(5): 953-62, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21314693

RESUMEN

BACKGROUND: Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptibility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. METHODS: Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 h/d) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hours after final ethanol (or air) exposure for 5 consecutive days. RESULTS: Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared with HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice did not change from baseline levels of intake. In contrast, HAP-2 female and LAP-2 mice of both sexes did not show changes in ethanol intake as a consequence of intermittent ethanol exposure. CONCLUSIONS: Overall, these results indicate that the magnitude of ethanol withdrawal-related seizures is inversely related to inherited ethanol intake preference. Additionally, intermittent ethanol vapor exposure appears more likely to affect high-drinking mice (C57BL/6J and HAP-2) than low drinkers, although these animals are less affected by ethanol withdrawal.


Asunto(s)
Convulsiones por Abstinencia de Alcohol/genética , Alcoholismo/genética , Etanol/administración & dosificación , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Convulsiones por Abstinencia de Alcohol/etiología , Alcoholismo/complicaciones , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Recurrencia , Especificidad de la Especie , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/genética
17.
Alcohol ; 97: 31-39, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547429

RESUMEN

BACKGROUND: Previous research has demonstrated the utility of subanesthetic doses of ketamine in decreasing binge (Drinking-in-the-Dark, or DID) 20% alcohol intake in female inbred (C57BL/6J) mice when administered 12 hours prior to alcohol access (Crowley et al., 2019). In the current study, we assess the efficacy of a similar ketamine pretreatment using male and female selectively bred, crossed High Alcohol Preferring (cHAP) mice, which also drink to intoxication, but are not inbred. We hypothesized that ketamine would decrease binge alcohol intake without impacting locomotor activity. METHODS AND RESULTS: Subjects were 28 adult cHAP mice. Mice first received a 2-week DID drinking history using 2-h/day alcohol access. On day 12, prior to ketamine treatment, the average blood ethanol concentration (BEC) was 130 mg/dL, confirming that mice reliably reached intoxicating BECs. On day 15, mice were given 0, 3, or 10 mg/kg of ketamine 12 hours prior to the DID session. Ketamine did not decrease total (2-h) alcohol consumption or locomotion. Interestingly, the 10 mg/kg dose of ketamine did alter the drinking pattern in male mice, decreasing front-loading for a single day. We opted to then increase the doses to 32 or 100 mg/kg (i.e., an anesthetic dose) two days after the initial treatment, keeping the saline control. Mice of both sexes decreased total binge alcohol intake at the 100 mg/kg dose only, but again, the effect only lasted one day. CONCLUSIONS: The current study found that cHAP mice reached more than double the BECs observed in C57BL/6J mice during DID, but did not respond to subanesthetic ketamine. Modest efficacy was found for ketamine pretreatment at anesthetic doses. Differences in findings may be due to differential intake during DID, or genetic differences between C57Bl/6J mice and cHAP mice. Drug efficacy in multiple models is important for discovering reliable pharmacotherapies for alcoholism.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Ketamina , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/genética , Animales , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/genética , Etanol , Femenino , Humanos , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Front Pharmacol ; 12: 614396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767622

RESUMEN

The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis.

19.
Alcohol Clin Exp Res ; 34(8): 1363-75, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20491739

RESUMEN

BACKGROUND: Impulsivity is genetically correlated with, and precedes, addictive behaviors and alcoholism. If impulsivity or attention is causally related to addiction, certain pharmacological manipulations of impulsivity and/or attention may affect alcohol drinking, and vice versa. The current studies were designed to explore the relationship among impulsivity, drinking, and vigilance in selectively bred High Alcohol Preferring (HAP) mice, a line that has previously demonstrated both high impulsivity and high alcohol consumption. Amphetamine, naltrexone, and memantine were tested in a delay discounting (DD) task for their effects on impulsivity and vigilance. The same drugs and doses were also assessed for effects on alcohol drinking in a 2-bottle choice test. METHODS: HAP mice were subjected to a modified version of adjusting amount DD using 0.5-second and 10-second delays to detect decreases and increases, respectively, in impulsive responding. In 2 experiments, mice were given amphetamine (0.4, 0.8, or 1.2 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) before DD testing. Another pair of studies used scheduled access, 2-bottle choice drinking to assess effects of amphetamine (0.4, 1.2, or 3.0 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) on alcohol consumption. RESULTS: Amphetamine dose-dependently reduced impulsivity and vigilance decrement in DD, but similar doses left alcohol drinking unaffected. Naltrexone and memantine decreased alcohol intake at doses that did not affect water drinking but had no effects on impulsivity or vigilance decrement in the DD task. CONCLUSIONS: Contrary to our hypothesis, none of the drugs tested here, while effective on either alcohol drinking or impulsivity, decreased both behaviors. These findings suggest that the genetic association between drinking and impulsivity observed in this population is mediated by mechanisms other than those targeted by the drugs tested in these studies.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Conducta de Elección/efectos de los fármacos , Conducta Impulsiva/psicología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Alcoholismo/psicología , Anfetamina/farmacología , Animales , Conducta Adictiva/tratamiento farmacológico , Conducta Adictiva/genética , Conducta Adictiva/psicología , Conducta de Elección/fisiología , Femenino , Conducta Impulsiva/tratamiento farmacológico , Conducta Impulsiva/genética , Masculino , Memantina/farmacología , Ratones , Naltrexona/farmacología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología
20.
Exp Clin Psychopharmacol ; 28(4): 379-387, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32150428

RESUMEN

Alcohol consumption may precede, or result from, behavioral inflexibility and contribute to individuals' difficulties ceasing drinking. Attentional set shifting tasks are an animal analog to a human behavioral flexibility task requiring recognition of a previous strategy as inappropriate, and the formation and maintenance of a novel strategy (Floresco, Block, & Tse, 2008). Abstinent individuals with alcohol use disorder, nonalcoholic individuals with a family history of alcoholism, and mice exposed to chronic-intermittent alcohol vapor show impaired behavioral flexibility (Gierski et al., 2013; Hu, Morris, Carrasco, & Kroener, 2015; Oscar-Berman et al., 2009). Behavioral flexibility deficits can be linked to frontal cortical regions connected to the striatum (Ragozzino, 2007), and alterations to the endocannabinoid system, implicated in drug seeking and consumption (Economidou et al., 2006; Serrano & Parsons, 2011), may affect these behaviors. Alcohol-preferring and nonpreferring rodents exhibit differences in CB1 receptor expression (CB1R; Hansson et al., 2007; Hungund & Basavarajappa, 2000), but whether dorsal striatal CB1Rs are important for other alcohol-related behaviors such as attentional set shifting tasks remains unclear. This study assesses whether selectively bred high (HAP) versus low alcohol-preferring mice differ in an operant attentional set shifting task or CB1R levels in the dorsal striatum and whether a history of voluntary alcohol consumption in crossed HAP mice exacerbates inflexibility. Contrary to our hypothesis, neither genetic differences in alcohol preference nor drinking affected set shifting. However, high alcohol-preferring mice-3 mice showed reduced levels of dorsal striatal CB1R compared with low alcohol-preferring-3 mice, suggesting that genetic differences in alcohol consumption may be mediated in part by striatal CB1R. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Etanol/administración & dosificación , Animales , Atención , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA