Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JBMR Plus ; 7(10): e10797, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808391

RESUMEN

Estrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERß are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations. Specifically, either high circulating sex steroid levels in global ERα knockout mice or the effects of deletion of ERα during growth and development in constitutive cell-specific knockout mice have made it difficult to clearly define the role of ERα in specific cell types in the adult skeleton. We recently generated and characterized mice with tamoxifen-inducible ERα deletion in osteocytes driven by the 8-kb Dmp1 promoter (ERαΔOcy mice), revealing detrimental effects of osteocyte-specific ERα deletion on trabecular bone volume (-20.1%) and bone formation rate (-18.9%) in female, but not male, mice. Here, we developed and characterized analogous mice with inducible ERα deletion in osteoclasts using the Cathepsin K promoter (ERαΔOcl mice). In a study design identical to that with the previously described ERαΔOcy mice, adult female, but not male, ERαΔOcl mice showed a borderline (-10.2%, p = 0.084) reduction in trabecular bone volume, no change in osteoclast numbers, but a significant increase in serum CTx levels, consistent with increased osteoclast activity. These findings in ERαΔOcl mice differ from previous studies of constitutive osteoclast-specific ERα deletion, which led to clear deficits in trabecular bone and increased osteoclast numbers. Collectively, these data indicate that in adult mice, estrogen action in the osteocyte is likely more important than via the osteoclast and that ERα deletion in osteoclasts from conception onward has more dramatic skeletal effects than inducible osteoclastic ERα deletion in adult mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
J Bone Miner Res ; 37(9): 1750-1760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789113

RESUMEN

Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Receptor alfa de Estrógeno , Osteocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteocitos/metabolismo , ARN Mensajero/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA