Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Genet ; 19(6): e1010812, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347785

RESUMEN

Bacteria must often survive following the exhaustion of their external growth resources. Fitting with this need, many bacterial species that cannot sporulate, can enter a state known as long term stationary phase (LTSP) in which they can persist for years within spent media. Several recent studies have revealed the dynamics of genetic adaptation of Escherichia coli under LTSP. Yet, the metabolic consequences of such genetic adaptation were not addressed. Here, we characterized the metabolic changes LTSP populations experience, over the first 32 days under LTSP. This allowed us to link genetic adaptations observed in a convergent manner across LTSP populations back to their metabolic adaptive effect. Specifically, we demonstrate that through the acquisition of mutations combinations in specific sets of metabolic genes, E. coli acquires the ability to consume the short chain fatty acid butyrate. Intriguingly, this fatty acid is not initially present within the rich media we used in this study. Instead, it is E. coli itself that produces butyrate during its initial growth within fresh rich media. The mutations that enable butyrate consumption allow E. coli to grow on butyrate. However, the clones carrying these mutations rapidly decrease in frequency, once the butyrate is consumed, likely reflecting an associated cost to fitness. Yet despite this, E. coli populations show a remarkable capability of maintaining these genotypes at low frequency, as standing variation. This in turn allows them to more rapidly re-adapt to consume butyrate, once it again becomes available to them.


Asunto(s)
Butiratos , Escherichia coli , Escherichia coli/metabolismo , Butiratos/metabolismo , Adaptación Fisiológica/genética , Aclimatación , Mutación , Bacterias
2.
Eur J Nutr ; 58(2): 879-893, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29804185

RESUMEN

PURPOSE: Obesity, which is characterized by triglyceride accumulation mainly in adipocytes but also in arterial wall cells such as macrophages, is a major risk factor for developing atherosclerosis. We aimed to identify the crosstalk related to lipid metabolism and oxidation status between adipocytes and macrophages. METHODS: We used a co-culture model system with J477A.1 cultured macrophages and 3T3L1 cultured adipocytes. For an in-vivo co-culture system, we used C57BL/6 mouse peritoneal macrophages and visceral or subcutaneous adipose tissue. RESULTS: Adipocytes significantly increased reactive oxygen species generation, up to twofold, and decreased cholesterol content by 22% in the co-cultured macrophages. Macrophages significantly increased triglyceride-biosynthesis rate by twofold and decreased triglyceride-degradation rate by 30%, resulting in increased triglyceride accumulation in the co-cultured adipocytes by up to 72%. In the in-vivo mouse model, visceral adipose tissue crosstalk with macrophages resulted in a significant pro-atherogenic phenotype with respect to cellular cholesterol metabolism. In contrast, the interaction between subcutaneous adipose tissue and macrophages mostly affected cellular triglyceride metabolism. There were no significant effects on mitochondrial respiration capacity in the macrophages. Upon oxidative-stress reduction in the co-cultured cells using the polyphenol-rich antioxidant, pomegranate juice, the expression of genes related to cellular lipid accumulation was significantly reduced. CONCLUSIONS: We reveal, for the first time, that paracrine interactions between adipocytes and macrophages result in oxidative stress and lipids metabolic alterations in both cells, toward increased atherogenicity which can be reversed by phenolic antioxidants.


Asunto(s)
Adipocitos/metabolismo , Aterosclerosis/metabolismo , Metabolismo de los Lípidos/fisiología , Macrófagos/metabolismo , Estrés Oxidativo/fisiología , Tejido Adiposo/metabolismo , Animales , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Molecules ; 23(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966272

RESUMEN

Anthocyanins are water-soluble phenolic pigments. However, their poor solubility in lipidic media limits their use. This hurdle can be overcome with the lipophilization of anthocyanins, which consists of adding an aliphatic chain to a hydrophilic compound, in order to increase its solubility in lipids. Still, the unspecific chemical lipophilization of anthocyanin-esters produces molecules with different properties from their precursors. In this work, experimental changes of anthocyanin-esters obtained by chemical lipophilization are investigated in silico aiming specifically at observing their molecular behavior and comparing it with their anthocyanin precursor. Thus, the analysis of delphinidin 3-O-sambubioside and its esters employing Density Functional Theory (DFT) methods, such as the hybrid functional B3LYP in combination with the 6-31++G(d,p) Pople basis set, provides the ground state properties, the local reactivity and the molecular orbitals (MOs) of these compounds. Excited states properties were analyzed by TD-DFT with the B3LYP functional, and the M06 and M06-2X meta-GGA functionals. Local reactivity calculations showed that the electrophilic site for all the anthocyanin-esters was the same as the one for the anthocyanin precursor, however the nucleophilic site changed depending localization of the esterification. TD-DFT results indicate that the place of esterification could change the electronic transitions and the MOs spatial distribution.


Asunto(s)
Antocianinas/química , Ésteres/química , Modelos Teóricos , Estructura Molecular , Difracción de Rayos X
4.
J Nat Prod ; 79(7): 1709-18, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27312226

RESUMEN

The intense red-colored Hibiscus sabdariffa flowers are an inexpensive source of anthocyanins with potential to be used as natural, innocuous, and health-beneficial colorants. An anthocyanin-rich extract from hibiscus flowers was obtained by ultrasound-assisted extraction. By a single-step process fractionation using a Sep-Pak C18 cartridge, the main hibiscus anthocyanins, delphinidin-3-O-sambubioside (Dp-samb) and cyanidin-3-O-sambubioside (Cy-samb), were separated and then characterized via NMR and HPLC-ESIMS data. Since Dp-samb was the most abundant anthocyanin identified in the extract, its colorant properties were studied by the pH jumps method, which allowed the calculation of the single acid-base equilibrium (pK'a 2.92), the acidity (pKa 3.70), and the hydration constants (pKh 3.02). Moreover, by using size-exclusion chromatography, new cyanidin-derived anthocyanins (with three or more sugar units) were successfully identified and reported for the first time in the hibiscus extract.


Asunto(s)
Antocianinas/aislamiento & purificación , Hibiscus/química , Antocianinas/química , Cromatografía Líquida de Alta Presión , Flores/química , Estructura Molecular , Dióxido de Silicio
6.
Methods Cell Biol ; 164: 137-156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225912

RESUMEN

Fasting induces vast metabolic adaptations on the cellular level and leads to an organism-wide induction of autophagy. Autophagic degradation subserves resource recycling and facilitates the maintenance of energetic homeostasis. Mass spectrometry offers the possibility to assess changes in the metabolome that occur in conditions of nutrient deprivation and to profile such adaptations. Here we describe a detailed workflow for the targeted quantitation and untargeted profiling of metabolites that can be used to assess the intracellular metabolome of starving cells. Moreover, we outline a workflow for the use of non-radioactive isotope labeled metabolites. Altogether, we show that mass spectrometry is a powerful tool for monitoring metabolic changes in conditions of fasting.


Asunto(s)
Metaboloma , Metabolómica , Autofagia , Espectrometría de Masas , Flujo de Trabajo
7.
Aging (Albany NY) ; 13(5): 6375-6405, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653967

RESUMEN

The presence of Akkermansia muciniphila (Akk) in the human gut is associated with good health, leanness and fitness. Mouse experimentation has demonstrated positive effects for Akk, which counteracts aging, mediates antiobesity and antidiabetic effects, dampens inflammation and improves anticancer immunosurveillance. Clinical trials have confirmed antidiabetic effects for Akk. Here, we investigated the time-dependent effects of oral administration of Akk (which was live or pasteurized) and other bacteria to mice on the metabolome of the ileum, colon, liver and blood plasma. Metabolomics was performed by a combination of chromatographic and mass spectrometric methods, yielding a total of 1.637.227 measurements. Akk had major effects on metabolism, causing an increase in spermidine and other polyamines in the gut and in the liver. Pasteurized Akk (Akk-past) was more efficient than live Akk in elevating the intestinal concentrations of polyamines, short-chain fatty acids, 2-hydroxybutyrate, as well multiple bile acids, which also increased in the circulation. All these metabolites have previously been associated with human health, providing a biochemical basis for the beneficial effects of Akk.


Asunto(s)
Probióticos/farmacología , Administración Oral , Akkermansia , Animales , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Hidroxibutiratos/metabolismo , Hígado/metabolismo , Metaboloma , Metabolómica , Ratones Endogámicos C57BL , Pasteurización , Poliaminas/metabolismo , Espermidina/metabolismo
8.
Aging (Albany NY) ; 13(17): 20860-20885, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517343

RESUMEN

Cancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor prognosis. Our present work supports the contention that acetylated polyamines are associated with severe Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism.


Asunto(s)
COVID-19/sangre , COVID-19/patología , Neoplasias/sangre , Neoplasias/virología , Poliaminas/sangre , Acetilación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/microbiología , COVID-19/virología , Estudios de Cohortes , Citocinas/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Metaboloma , Persona de Mediana Edad , Propionatos/sangre , Índice de Severidad de la Enfermedad , Adulto Joven , ortoaminobenzoatos/sangre
9.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33320838

RESUMEN

Limited experimental evidence bridges nutrition and cancer immunosurveillance. Here, we show that ketogenic diet (KD) - or its principal ketone body, 3-hydroxybutyrate (3HB), most specifically in intermittent scheduling - induced T cell-dependent tumor growth retardation of aggressive tumor models. In conditions in which anti-PD-1 alone or in combination with anti-CTLA-4 failed to reduce tumor growth in mice receiving a standard diet, KD, or oral supplementation of 3HB reestablished therapeutic responses. Supplementation of KD with sucrose (which breaks ketogenesis, abolishing 3HB production) or with a pharmacological antagonist of the 3HB receptor GPR109A abolished the antitumor effects. Mechanistically, 3HB prevented the immune checkpoint blockade-linked upregulation of PD-L1 on myeloid cells, while favoring the expansion of CXCR3+ T cells. KD induced compositional changes of the gut microbiota, with distinct species such as Eisenbergiella massiliensis commonly emerging in mice and humans subjected to carbohydrate-low diet interventions and highly correlating with serum concentrations of 3HB. Altogether, these results demonstrate that KD induces a 3HB-mediated antineoplastic effect that relies on T cell-mediated cancer immunosurveillance.


Asunto(s)
Dieta Cetogénica , Cuerpos Cetónicos/administración & dosificación , Neoplasias Experimentales/dietoterapia , Neoplasias Experimentales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/metabolismo , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Femenino , Microbioma Gastrointestinal/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Cuerpos Cetónicos/metabolismo , Neoplasias Renales/dietoterapia , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/inmunología , Melanoma Experimental/dietoterapia , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
10.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707411

RESUMEN

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Asunto(s)
COVID-19/sangre , Metaboloma , SARS-CoV-2/metabolismo , Anticuerpos Monoclonales Humanizados/administración & dosificación , Biomarcadores/sangre , COVID-19/diagnóstico , Femenino , Humanos , Masculino , Metabolómica , Pronóstico , Tratamiento Farmacológico de COVID-19
11.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34230615

RESUMEN

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Asunto(s)
COVID-19/complicaciones , COVID-19/virología , Linfopenia/complicaciones , Neoplasias/complicaciones , ARN Viral/análisis , SARS-CoV-2/genética , Esparcimiento de Virus , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , ADN Bacteriano/sangre , Enterobacteriaceae/genética , Femenino , Humanos , Interferón Tipo I/sangre , Linfopenia/virología , Masculino , Micrococcaceae/genética , Persona de Mediana Edad , Nasofaringe/virología , Neoplasias/diagnóstico , Neoplasias/mortalidad , Pandemias , Pronóstico , Factores de Tiempo , Adulto Joven
12.
J Cardiovasc Pharmacol Ther ; 25(2): 174-186, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31648564

RESUMEN

BACKGROUND: Synthetic forms of glucocorticoids (GCs; eg, prednisone, prednisolone) are anti-inflammatory drugs that are widely used in clinical practice. The role of GCs in cardiovascular diseases, including atherosclerosis, is highly controversial, and their impact on macrophage foam cell formation is still unknown. We investigated the effects of prednisone and prednisolone on macrophage oxidative stress and lipid metabolism. METHODS AND RESULTS: C57BL/6 mice were intraperitoneally injected with prednisone or prednisolone (5 mg/kg) for 4 weeks, followed by lipid metabolism analyses in the aorta and peritoneal macrophages. We also analyzed the effect of serum samples obtained from 9 healthy human volunteers before and after oral administration of prednisone (20 mg for 5 days) on J774A.1 macrophage atherogenicity. Finally, J774A.1 macrophages, human monocyte-derived macrophages, and fibroblasts were incubated with increasing concentrations (0-200 ng/mL) of prednisone or prednisolone, followed by determination of cellular oxidative status, and triglyceride and cholesterol metabolism. Prednisone and prednisolone treatment resulted in a significant reduction in triglyceride and cholesterol accumulation in macrophages, as observed in vivo, ex vivo, and in vitro. These effects were associated with GCs' inhibitory effect on triglyceride- and cholesterol-biosynthesis rates, through downregulation of diacylglycerol acyltransferase 1 and HMG-CoA reductase expression. Glucocorticoid-induced reduction of cellular lipid accumulation was mediated by the GC receptors on the macrophages, because the GC-receptor antagonist (RU486) abolished these effects. In fibroblasts, unlike macrophages, GCs showed no effects. CONCLUSION: Prednisone and prednisolone exhibit antiatherogenic activity by protecting macrophages from lipid accumulation and foam cell formation.


Asunto(s)
Colesterol/metabolismo , Células Espumosas/efectos de los fármacos , Glucocorticoides/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Prednisolona/administración & dosificación , Prednisona/administración & dosificación , Triglicéridos/metabolismo , Administración Oral , Adolescente , Adulto , Animales , Línea Celular , Colesterol/sangre , Células Espumosas/metabolismo , Glucocorticoides/sangre , Humanos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Prednisolona/sangre , Prednisona/sangre , Triglicéridos/sangre , Adulto Joven
13.
J Agric Food Chem ; 68(35): 9568-9575, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786852

RESUMEN

A strange cutoff phenomenon of a series of protocatechuic acid alkyl esters had been noticed using the conjugated autoxidizable triene (CAT) assay. Two parabolic shapes of antioxidant activities of protocatechuic acid alkyl esters described as ″the double cutoff effect″ have been speculated as a result of an oxidative driving force generated in the aqueous phase. The aim of this research was to investigate the double cutoff effect using various types of oxidation driving forces in different CAT-based assays. To further explain the phenomenon, the natural oxidation of conjugated autoxidizable triene (NatCAT) assay has been developed for the first time by relying solely on only the lipid autoxidation of tung oil-in-water (O/W) emulsions. In conclusion, NatCAT exhibited different antioxidant and oxidation patterns from both CAT and apolar radical-initiated CAT assays, and only one cutoff point was obtained. This discovery would lead to a greater understanding of the complexity of antioxidant/lipid oxidation dynamics in O/W emulsion systems.


Asunto(s)
Antioxidantes/química , Ésteres/química , Hidroxibenzoatos/química , Emulsiones/química , Oxidación-Reducción , Aceites de Plantas/química
15.
Rambam Maimonides Med J ; 9(3)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29944113

RESUMEN

The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

16.
Lipids ; 53(11-12): 1031-1041, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30560569

RESUMEN

The polyphenol-rich pomegranate juice (PJ) and the high-density lipoprotein (HDL)-associated paraoxonase1 (PON1) are known as potent atheroprotective antioxidants, but their effects on other tissues related to cardiovascular disease (CVD) remain unknown. The current study aimed to investigate the effects of treating mice with PJ or recombinant PON1 (rePON1) on the oxidation and lipid status of CVD-related tissues: serum, aorta, heart, liver, kidney, visceral, and subcutaneous adipose tissues (VAT and SAT). Both PJ consumption and rePON1 injection decreased the serum levels of thiobarbituric acid-reactive substances (16% and 19%) and triacylglycerols (TAG, 24% and 27%), while only rePON1 increased the levels of thiol groups (35%) and decreased serum cholesterol (15%). Both PJ and rePON1 significantly decreased aortic cholesterol (38% and 32%) and TAG (62% and 58%) contents in association with downregulation of the key TAG biosynthetic enzyme diacylglycerol O-acyltransferase 1 (DGAT1, 71% and 65%), while only PJ decreased aortic lipid peroxides (47%). Substantial TAG-lowering effects of both PJ and rePON1 were observed also in the heart (31% and 42%), liver (34% and 42%), and kidney (42% and 57%). In both VAT and SAT, rePON1 decreased the levels of lipid peroxides (28% and 25%), while PJ decreased the TAG content (22% and 18%). Ex vivo incubation of SAT with serum derived from mice that consumed PJ or injected with rePON1 decreased SAT lipid peroxides (35% or 28%) and TAG mass (12% or 10%). These novel findings highlight potent TAG-lowering properties of exogenous (PJ) and endogenous (PON1) antioxidants in tissues associated with CVD.


Asunto(s)
Antioxidantes/farmacología , Arildialquilfosfatasa/farmacología , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/metabolismo , Lythraceae/química , Extractos Vegetales/farmacología , Triglicéridos/sangre , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Colesterol/sangre , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Grasa Subcutánea/efectos de los fármacos
17.
Biofactors ; 44(3): 245-262, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29399895

RESUMEN

Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 44(3):245-262, 2018.


Asunto(s)
Anticolesterolemiantes/farmacología , Suplementos Dietéticos , Células Espumosas/efectos de los fármacos , Cetoácidos/farmacología , Leucina/farmacología , Macrófagos/efectos de los fármacos , Adenosina Trifosfato/agonistas , Adenosina Trifosfato/biosíntesis , Adolescente , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colesterol/biosíntesis , VLDL-Colesterol/antagonistas & inhibidores , VLDL-Colesterol/biosíntesis , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/metabolismo , Relación Dosis-Respuesta a Droga , Células Espumosas/citología , Células Espumosas/metabolismo , Voluntarios Sanos , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Triglicéridos/antagonistas & inhibidores , Triglicéridos/biosíntesis
18.
Atherosclerosis ; 276: 155-162, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30075439

RESUMEN

BACKGROUND AND AIMS: Increased oxidative stress is associated with accelerated atherosclerosis. Emerging evidence highlights the role of heparanase in atherogenesis, where heparanase inhibitor PG545 reduces oxidative stress in apolipoprotein E deficient mice (E0 mice). Herein, we studied the effects of PG545 on atherosclerosis progression in E0 mice. METHODS: Male E0 mice fed a high-fat diet (n = 20) were divided into 3 groups treated with weekly intraperitoneal injections of either low (0.2 mg/mouse) or high dose (0.4 mg/mouse)PG545 or normal saline (controls) for twelve weeks. Body weight and food intake were measured weekly. At the end of the treatment period, blood pressure was measured, animals were sacrificed and serum samples were collected and assessed for biochemical parameters and oxidative stress. Aortic vessels and livers were collected for atherosclerotic plaques and histopathological analysis, respectively. RESULTS: Blood pressure decreased in mice treated with low, but not high dose of PG545. In addition, heparanase inhibition caused a dose-dependent reduction in serum oxidative stress, total cholesterol, low-density lipoproteins, triglycerides, high-density lipoproteins, and aryl esterase activity. Although food intake was not reduced by PG545, body weight gain was significantly attenuated in PG545 treated groups. Both doses of PG545 caused a marked reduction in aortic wall thickness and atherosclerosis development, and liver steatosis. Liver enzymes and serum creatinine were not affected by PG545. CONCLUSIONS: Heparanase inhibition by PG545 caused a significant reduction in lipid profile and serum oxidative stress along with attenuation of atherosclerosis, aortic wall thickness, and liver steatosis. Moreover, PG545 attenuated weight gain without reducing food intake. Collectively, these findings suggest that heparanase blockade is highly effective in slowing atherosclerosis formation and progression, and decreasing liver steatosis.


Asunto(s)
Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Hígado Graso/prevención & control , Glucuronidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Hígado/efectos de los fármacos , Saponinas/farmacología , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/enzimología , Hígado Graso/genética , Hígado Graso/patología , Glucuronidasa/metabolismo , Lípidos/sangre , Hígado/enzimología , Hígado/patología , Masculino , Ratones Noqueados para ApoE , Estrés Oxidativo/efectos de los fármacos , Placa Aterosclerótica
19.
Food Chem ; 230: 189-194, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407900

RESUMEN

Hibiscus sabdariffa flowers represent an interesting source of anthocyanins, one of the most important plant pigments, which are responsible of the intense red color of the calyces, and have potential as natural colorants for food applications. Nevertheless, anthocyanins are highly hydrosoluble and unstable compounds. On this basis, the aim of this work was to increase the lipophilicity of the hibiscus anthocyanins by lipophilization, in order to obtain amphiphilic colorants, which could be easily incorporated in lipid-rich food matrices. Octanoyl derivatives of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside were chemically obtained for the first time, and characterized by means of HPLC-ESI-MS data.


Asunto(s)
Antocianinas/uso terapéutico , Disacáridos/química , Flores/química , Hibiscus/química , Espectrometría de Masas/métodos , Extractos Vegetales/química , Antocianinas/análisis , Antocianinas/química
20.
J Nutr Biochem ; 45: 24-38, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28431321

RESUMEN

Atherosclerosis-related research has focused mainly on the effects of lipids on macrophage foam cell formation and atherogenesis, whereas the role of amino acids (AAs) was understudied. The current study aimed to identify anti- or pro-atherogenic AA in the macrophage model system and to elucidate the underlying metabolic and molecular mechanisms. J774A.1 cultured macrophages were treated with increasing concentrations of each 1 of the 20 AAs. Macrophage atherogenicity was assessed in terms of cellular toxicity, generation of reactive oxygen species (ROS) and cellular cholesterol or triglyceride content. At nontoxic concentrations (up to 1 mM), modest effects on ROS generation or cholesterol content were noted, but six specific AAs significantly affected macrophage triglyceride content. Glycine, cysteine, alanine and leucine significantly decreased macrophage triglyceride content (by 24%-38%), through attenuated uptake of triglyceride-rich very low-density lipoprotein (VLDL) by macrophages. In contrast, glutamate and glutamine caused a marked triglyceride accumulation in macrophages (by 107% and 129%, respectively), via a diacylglycerol acyltransferase-1 (DGAT1)-dependent increase in triglyceride biosynthesis rate with a concurrent maturation of the sterol regulatory element-binding protein-1 (SREBP1). Supplementation of apolipoprotein E-deficient (apoE-/-) mice with glycine for 40 days significantly decreased the triglyceride levels in serum and in peritoneal macrophages (MPMs) isolated from the mice (by 19%). In contrast, glutamine supplementation significantly increased MPM ROS generation and the accumulation of cholesterol and that of triglycerides (by 48%), via enhanced uptake of LDL and VLDL. Altogether, the present findings reveal some novel roles for specific AA in macrophage atherogenicity, mainly through modulation of cellular triglyceride metabolism.


Asunto(s)
Aminoácidos/metabolismo , Aterosclerosis/metabolismo , Macrófagos/patología , Triglicéridos/metabolismo , Aminoácidos/sangre , Aminoácidos/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Antígenos CD36/metabolismo , Colesterol/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lipoproteínas VLDL/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Receptores de LDL/metabolismo , Receptores Depuradores de Clase B/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA