Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Plant Biol ; 24(1): 560, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877388

RESUMEN

BACKGROUND: The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS: Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION: The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.


Asunto(s)
Antioxidantes , Deshidratación , Solanum melongena , Solanum melongena/genética , Solanum melongena/crecimiento & desarrollo , Solanum melongena/fisiología , Solanum melongena/metabolismo , Antioxidantes/metabolismo , Hibridación Genética , Genotipo , Sequías , Vigor Híbrido/genética , Prolina/metabolismo , Biomasa
2.
J Exp Bot ; 74(20): 6285-6305, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37419672

RESUMEN

Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.


Asunto(s)
Solanum melongena , Solanum , Solanum melongena/genética , Fitomejoramiento , Solanum/genética , Fenotipo
3.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047209

RESUMEN

The pear is an important fruit tree in temperate areas, but due to its sensitivity, fruit yield and quality are often affected by disease and pest attacks. Pear genotypes from a germplasm collection comprising 13 Pyrus species, 17 Romanian varieties, and 50 non-Romanian varieties from a worldwide assortment were investigated in this study. Throughout four years, response to attack of the principal pathogens and pests was investigated phenotypically under natural conditions of infection and infestation. SSR markers were used to analyze the genetic diversity of the genotypes. A standardized method for the evaluation of responses to biotic stressors was proposed, which highlighted significant differences between genotypes. The species and varieties with the lowest degrees of attack (DA%), calculated based on the frequency and intensity of attack, were identified for pear scab (Venturia pyrina), septoria (Septoria pyricola), fire blight (Erwinia amylovora), and psyllids (Psylla sp.). These accessions could provide valuable sources of genes of interest to develop resistant varieties in new pear breeding programs. By combining phenotypic and molecular analyses, significant information was obtained that can be exploited to generate high variability for selection through artificial hybridization by harnessing accessions with complementary molecular fingerprints and high genetic distances.


Asunto(s)
Erwinia amylovora , Pyrus , Pyrus/genética , Fitomejoramiento , Genotipo , Frutas , Enfermedades de las Plantas/genética
4.
BMC Plant Biol ; 20(1): 6, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906864

RESUMEN

BACKGROUND: Efficient organogenesis induction in eggplant (Solanum melongena L.) is required for multiple in vitro culture applications. In this work, we aimed at developing a universal protocol for efficient in vitro regeneration of eggplant mainly based on the use of zeatin riboside (ZR). We evaluated the effect of seven combinations of ZR with indoleacetic acid (IAA) for organogenic regeneration in five genetically diverse S. melongena and one S. insanum L. accessions using two photoperiod conditions. In addition, the effect of six different concentrations of indolebutyric acid (IBA) in order to promote rooting was assessed to facilitate subsequent acclimatization of plants. The ploidy level of regenerated plants was studied. RESULTS: In a first experiment with accessions MEL1 and MEL3, significant (p < 0.05) differences were observed for the four factors evaluated for organogenesis from cotyledon, hypocotyl and leaf explants, with the best results obtained (9 and 11 shoots for MEL1 and MEL3, respectively) using cotyledon tissue, 16 h light / 8 h dark photoperiod conditions, and medium E6 (2 mg/L of ZR and 0 mg/L of IAA). The best combination of conditions was tested in the other four accessions and confirmed its high regeneration efficiency per explant when using both cotyledon and hypocotyl tissues. The best rooting media was R2 (1 mg/L IBA). The analysis of ploidy level revealed that between 25 and 50% of the regenerated plantlets were tetraploid. CONCLUSIONS: An efficient protocol for organogenesis of both cultivated and wild accessions of eggplant, based on the use of ZR, is proposed. The universal protocol developed may be useful for fostering in vitro culture applications in eggplant requiring regeneration of plants and, in addition, allows developing tetraploid plants without the need of antimitotic chemicals.


Asunto(s)
Isopenteniladenosina/análogos & derivados , Organogénesis de las Plantas/fisiología , Solanum melongena/crecimiento & desarrollo , Cotiledón/efectos de los fármacos , Cotiledón/crecimiento & desarrollo , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Técnicas In Vitro , Ácidos Indolacéticos/farmacología , Isopenteniladenosina/farmacología , Organogénesis de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Ploidias , Regeneración/efectos de los fármacos , Solanum melongena/metabolismo
5.
J Exp Bot ; 70(11): 3007-3019, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152173

RESUMEN

Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.


Asunto(s)
Productos Agrícolas/genética , Domesticación , Flores/crecimiento & desarrollo , Inflorescencia/anatomía & histología , Autoincompatibilidad en las Plantas con Flores/fisiología , Productos Agrícolas/fisiología , Fertilización
6.
Molecules ; 23(3)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29518035

RESUMEN

Due to its high tolerance to abiotic stress, barley (Hordeum vulgare) is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought) in nine accessions of "Ardhaoui" barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.


Asunto(s)
Adaptación Biológica , Sequías , Hordeum/química , Hordeum/metabolismo , Estrés Fisiológico , Biomarcadores , Genes de Plantas , Variación Genética , Hordeum/clasificación , Hordeum/genética , Fotosíntesis , Filogenia , Especies Reactivas de Oxígeno
7.
BMC Genomics ; 17: 321, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142449

RESUMEN

BACKGROUND: Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS: Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS: This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Solanum lycopersicum/genética , Solanum/clasificación , Evolución Molecular , Flores/genética , Ontología de Genes , Variación Genética , Anotación de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética , Solanum/genética , Solanum tuberosum/genética
8.
Molecules ; 20(10): 18464-81, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26473812

RESUMEN

Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.


Asunto(s)
Benzoatos/metabolismo , Genes de Plantas , Redes y Vías Metabólicas/genética , Fitomejoramiento/métodos , Carácter Cuantitativo Heredable , Verduras/genética , Antioxidantes/metabolismo , Ácidos Carboxílicos/metabolismo , Cinamatos/metabolismo , Cruzamientos Genéticos , Marcadores Genéticos , Humanos , Sitios de Carácter Cuantitativo , Verduras/metabolismo
9.
BMC Plant Biol ; 14: 350, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25491265

RESUMEN

BACKGROUND: Eggplant is a powerful source of polyphenols which seems to play a key role in the prevention of several human diseases, such as cancer and diabetes. Chlorogenic acid is the polyphenol most present in eggplant, comprising between the 70% and 90% of the total polyphenol content. Introduction of the high chlorogenic acid content of wild relatives, such as S. incanum, into eggplant varieties will be of great interest. A potential side effect of the increased level polyphenols could be a decrease on apparent quality due to browning caused by the polyphenol oxidase enzymes mediated oxidation of polyphenols. We report the development of a new interspecific S. melongena × S. incanum linkage map based on a first backcross generation (BC1) towards the cultivated S. melongena as a tool for introgressing S. incanum alleles involved in the biosynthesis of chlorogenic acid in the genetic background of S. melongena. RESULTS: The interspecific genetic linkage map of eggplant developed in this work anchor the most informative previously published genetic maps of eggplant using common markers. The 91 BC1 plants of the mapping population were genotyped with 42 COSII, 99 SSRs, 88 AFLPs, 9 CAPS, 4 SNPs and one morphological polymorphic markers. Segregation marker data resulted in a map encompassing 1085 cM distributed in 12 linkage groups. Based on the syntheny with tomato, the candidate genes involved in the core chlorogenic acid synthesis pathway in eggplant (PAL, C4H, 4CL, HCT, C3'H, HQT) as well as five polyphenol oxidase (PPO1, PPO2, PPO3, PPO4, PPO5) were mapped. Except for 4CL and HCT chlorogenic acid genes were not linked. On the contrary, all PPO genes clustered together. Candidate genes important in domestication such as fruit shape (OVATE, SISUN1) and prickliness were also located. CONCLUSIONS: The achievements in location of candidate genes will allow the search of favorable alleles employing marker-assisted selection in order to develop new varieties with higher chlorogenic content alongside a lower polyphenol oxidase activity. This will result into an enhanced product showing a lower fruit flesh browning with improved human health properties.


Asunto(s)
Catecol Oxidasa/genética , Ácido Clorogénico/metabolismo , Ligamiento Genético , Proteínas de Plantas/genética , Solanum/enzimología , Solanum/genética , Catecol Oxidasa/metabolismo , Mapeo Cromosómico , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum melongena/genética , Sintenía
10.
Int J Mol Sci ; 15(10): 17221-41, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25264739

RESUMEN

Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.


Asunto(s)
Ácido Clorogénico/análisis , Depuradores de Radicales Libres/análisis , Solanum/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Depuradores de Radicales Libres/farmacología , Frutas/química , Frutas/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solanum/metabolismo
11.
Plant Physiol Biochem ; 208: 108447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417307

RESUMEN

Identification of novel genotypes with enhanced nitrogen use efficiency (NUE) is a key challenge for a sustainable tomato production. In this respect, the performance of a panel of thirty tomato accessions were evaluated under high (HN; 5 mM N) and low (LN; 0.5 mM N) nitrogen irrigation solutions. For each treatment, when 50% of plants reached the first flower bud stage, plant growth and biomass traits, chlorophyll, flavonol and anthocyanin indexes, nitrogen balance index (NBI), C:N ratio in leaves, stems, and roots, and NUE were evaluated. Significant (p < 0.05) effects were observed for accession, N treatment, and their interaction across all the traits. Under LN, plants showed a delayed development (40 days for HN vs. 65 days for LN) and reduced growth and biomass. On average, LN condition led to 41.8% decrease in nitrogen uptake efficiency (NUpE) but also 189.0% increase in NUtE, resulting in 62.2% overall increase in NUE. A broad range of variation among accessions was observed under both HN and LN conditions. Under LN conditions, chlorophyll index and NBI decreased, while flavonol and anthocyanin indexes increased. Leaf C:N ratio was positively correlated with nitrogen utilisation efficiency (NUtE) in both N treatments. Multi-trait analyses identified top-performing accessions under each condition, allowing to identify one accession among top performers under both conditions. Correlation analysis revealed that high root biomass and leaf C:N ratio are useful markers for selecting high NUE accessions. These findings offer valuable insights for improving tomato NUE under varying nitrogen fertilization conditions and for breeding high-NUE cultivars.


Asunto(s)
Nitrógeno , Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas , Fitomejoramiento , Genotipo , Clorofila , Flavonoles , Fertilización
12.
Hortic Res ; 10(8): uhad141, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575654

RESUMEN

The development of new cultivars with improved nitrogen use efficiency (NUE) is key for implementing sustainable agriculture practices. Crop wild relatives (CWRs) provide valuable genetic resources for breeding programs aimed at achieving this goal. In this study, three eggplant (Solanum melongena) accessions together with their advanced backcrosses (ABs; BC3 to BC5 generations) were evaluated for 22 morpho-agronomic, physiological, and NUE traits under low nitrogen (LN) fertilization conditions. The ABs were developed with introgressions from the wild relatives Solanum insanum, Solanum dasyphyllum, and Solanum elaeagnifolium. The AB population comprised a total of 25, 59, and 59 genotypes, respectively, with overall donor wild relative genome coverage percentages of 58.8%, 46.3%, and 99.2%. The three S. melongena recurrent parents were also evaluated under control (normal) N fertilization. Reduction of N fertilization in the parents resulted in decreased chlorophyll content-related traits, aerial biomass, stem diameter, and yield and increased NUE, nitrogen uptake efficiency (NUpE), and nitrogen utilization efficiency (NUtE). However, the decrease in yield was moderate, ranging between 62.6% and 72.6%. A high phenotypic variation was observed within each of the three sets of ABs under LN conditions, with some individuals displaying improved transgressive characteristics over the recurrent parents. Using the single primer enrichment technology 5 k probes platform for high-throughput genotyping, we observed a variable but high degree of recurrent parent genome recovery in the ABs attributable to the lines recombination, allowing the successful identification of 16 quantitative trait loci (QTL). Different allelic effects were observed for the introgressed QTL alleles. Several candidate genes were identified in the QTL regions associated with plant growth, yield, fruit size, and NUE-related parameters. Our results show that eggplant materials with introgressions from CWRs can result in a dramatic impact in eggplant breeding for a more sustainable agriculture.

13.
Front Plant Sci ; 13: 847789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330873

RESUMEN

Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.

14.
Plants (Basel) ; 11(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35336643

RESUMEN

Marigolds (Tagetes spp.) are multifunctional flowering plants belonging to the Asteraceae family, well-known and widespread for their ornamental value and many other uses. In this study, morphological differences and genetic relationships among 21 cultivars of three species of marigold (Tagetes patula, T. erecta and T. tenuifolia) were analysed. Results have revealed obvious differences among genotypes, starting from the morphological characteristics of the seeds and their capacity to germinate to adult plant morphological characteristics, both between cultivars and species. The genotypic differences were manifested in considerable variation in the development of phenological stages and the main morphological traits of plants and flowers. PCA and hierarchical clustering analyses of morphological traits revealed a homogeneous grouping of cultivars within each species, except for Orion, belonging to T. patula, which was closer to T. erecta cultivars. A subset of 13 cultivars from the three species was subjected to SSR analysis, revealing considerable genetic diversity and good separation between T. patula on the one side and T. erecta and T. tenuifolia on the other. The observed heterozygosity was much lower than the expected heterozygosity, revealing a high degree of fixation. The results reveal that the three species evaluated have considerable morphological and genetic diversity, which has important implications for assessing genetic diversity, conserving germplasm and selecting parents for new breeding works in marigolds.

15.
Front Plant Sci ; 13: 1025951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388476

RESUMEN

Understanding the mechanisms by which chlorophylls are synthesized in the eggplant (Solanum melongena) fruit peel is of great relevance for eggplant breeding. A multi-parent advanced generation inter-cross (MAGIC) population and a germplasm collection have been screened for green pigmentation in the fruit peel and used to identify candidate genes for this trait. A genome-wide association study (GWAS) performed with 420 MAGIC individuals revealed a major association on chromosome 8 close to a gene similar to APRR2. Two variants in SmAPRR2, predicted as having a high impact effect, were associated with the absence of fruit chlorophyll pigmentation in the MAGIC population, and a large deletion of 5.27 kb was found in two reference genomes of accessions without chlorophyll in the fruit peel. The validation of the candidate gene SmAPRR2 was performed by its sequencing in a set of MAGIC individuals and through its de novo assembly in 277 accessions from the G2P-SOL eggplant core collection. Two additional mutations in SmAPRR2 associated with the lack of chlorophyll were identified in the core collection set. The phylogenetic analysis of APRR2 reveals orthology within Solanaceae and suggests that specialization of APRR2-like genes occurred independently in Cucurbitaceae and Solanaceae. A strong geographical differentiation was observed in the frequency of predominant mutations in SmAPRR2, resulting in a lack of fruit chlorophyll pigmentation and suggesting that this phenotype may have arisen and been selected independently several times. This study represents the first identification of a major gene for fruit chlorophyll pigmentation in the eggplant fruit.

16.
Genes (Basel) ; 12(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207298

RESUMEN

The HAWAIIAN SKIRT (HWS) gene has been described in Arabidopsis, rice, tomato and poplar where it seems to perform distinct functions with relatively little overlap. In tomato, alteration of the gene function confers facultative parthenocarpy, thought to be a consequence of changes in the microRNA metabolism. In the rice mutant, improvement in panicle architecture is associated with an increase in grain yield. Knowing that hws tomato fruits show a higher Brix level, it was suspected that vascular bundles might also be altered in this species, in a similar fashion to the rice phenotype. The pedicel structure of the hws-1 line was therefore examined under the microscope and sugar concentrations from phloem exudate were determined in an enzymatic assay. A distinct increase in the phloem area was observed as well as a higher sugar content in mutant phloem exudates, which is hypothesized to contribute to the high Brix level in the mutant fruits. Furthermore, the described phenotype in this study bridges the gap between Arabidopsis and rice phenotypes, suggesting that the modulation of the microRNA metabolism by HWS influences traits of agricultural interest across several species.


Asunto(s)
Proteínas F-Box/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Azúcares/metabolismo , Proteínas F-Box/metabolismo , Solanum lycopersicum/metabolismo , Mutación , Floema/genética , Floema/metabolismo , Proteínas de Plantas/metabolismo
17.
Methods Mol Biol ; 2264: 197-206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33263912

RESUMEN

The use of antimitotic agents such as colchicine has been common to obtain polyploid organisms. However, this approach entails certain problems, from its toxicity to the operators for being carcinogenic compounds to the instability of the individuals obtained, and the consequent reversion to its original ploidy because the individuals obtained in most cases are chimeric. In vitro culture allows taking advantage of the full potential offered by the cellular totipotence of plant organisms. Based on this, we present a new in vitro culture protocol to obtain polyploid organisms using zeatin riboside (ZR) and eggplant as a model organism. Flow cytometry is used to identify tetraploid regenerants. The regeneration of whole plants from the appropriate tissues using ZR allowed developing polyploid individuals in eggplant, a crop that tends to be recalcitrant to in vitro organogenesis. Thanks to the use of the polysomatic pattern of the explants, we have been able to develop a methodology that allows to obtain stable non-chimeric polyploid individuals from organogenic processes.


Asunto(s)
Organogénesis de las Plantas , Fitomejoramiento/métodos , Ploidias , Solanum melongena/crecimiento & desarrollo , Solanum melongena/genética
18.
Front Plant Sci ; 11: 577980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014001

RESUMEN

Over the last seven decades, γ-aminobutyric acid (GABA) has attracted great attention from scientists for its ubiquity in plants, animals and microorganisms and for its physiological implications as a signaling molecule involved in multiple pathways and processes. Recently, the food and pharmaceutical industries have also shown significantly increased interest in GABA, because of its great potential benefits for human health and the consumer demand for health-promoting functional compounds, resulting in the release of a plethora of GABA-enriched products. Nevertheless, many crop species accumulate appreciable GABA levels in their edible parts and could help to meet the daily recommended intake of GABA for promoting positive health effects. Therefore, plant breeders are devoting much effort into breeding elite varieties with improved GABA contents. In this regard, tomato (Solanum lycopersicum), the most produced and consumed vegetable worldwide and a fruit-bearing model crop, has received much consideration for its accumulation of remarkable GABA levels. Although many different strategies have been implemented, from classical crossbreeding to induced mutagenesis, new plant breeding techniques (NPBTs) have achieved the best GABA accumulation results in red ripe tomato fruits along with shedding light on GABA metabolism and gene functions. In this review, we summarize, analyze and compare all the studies that have substantially contributed to tomato GABA breeding with further discussion and proposals regarding the most recent NPBTs that could bring this process to the next level of precision and efficiency. This document also provides guidelines with which researchers of other crops might take advantage of the progress achieved in tomato for more efficient GABA breeding programs.

19.
Biology (Basel) ; 9(8)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824319

RESUMEN

The compelling need to increase global agricultural production requires new breeding approaches that facilitate exploiting the diversity available in the plant genetic resources. Multi-parent advanced generation inter-cross (MAGIC) populations are large sets of recombinant inbred lines (RILs) that are a genetic mosaic of multiple founder parents. MAGIC populations display emerging features over experimental bi-parental and germplasm populations in combining significant levels of genetic recombination, a lack of genetic structure, and high genetic and phenotypic diversity. The development of MAGIC populations can be performed using "funnel" or "diallel" cross-designs, which are of great relevance choosing appropriate parents and defining optimal population sizes. Significant advances in specific software development are facilitating the genetic analysis of the complex genetic constitutions of MAGIC populations. Despite the complexity and the resources required in their development, due to their potential and interest for breeding, the number of MAGIC populations available and under development is continuously growing, with 45 MAGIC populations in different crops being reported here. Though cereals are by far the crop group where more MAGIC populations have been developed, MAGIC populations have also started to become available in other crop groups. The results obtained so far demonstrate that MAGIC populations are a very powerful tool for the dissection of complex traits, as well as a resource for the selection of recombinant elite breeding material and cultivars. In addition, some new MAGIC approaches that can make significant contributions to breeding, such as the development of inter-specific MAGIC populations, the development of MAGIC-like populations in crops where pure lines are not available, and the establishment of strategies for the straightforward incorporation of MAGIC materials in breeding pipelines, have barely been explored. The evidence that is already available indicates that MAGIC populations will play a major role in the coming years in allowing for impressive gains in plant breeding for developing new generations of dramatically improved cultivars.

20.
Front Plant Sci ; 11: 757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754166

RESUMEN

Islands provide unique opportunities to integrated research approaches to study evolution and conservation because boundaries are circumscribed, geological ages are often precise, and many taxa are greatly imperiled. We combined morphological and hybridization studies with high-throughput genotyping platforms to streamline relationships in the endangered monophyletic and highly diverse lineage of Solanum in the Canarian archipelago, where three endemic taxa are currently recognized. Inter-taxa hybridizations were performed, and morphological expression was assessed with a common-garden approach. Using the eggplant Single Primer Enrichment Technology (SPET) platform with 5,093 probes, 74 individuals of three endemic taxa (Solanum lidii, S. vespertilio subsp. vespertilio, and S. vespertilio subsp. doramae) were sampled for SNPs. While morphological and breeding studies showed clear distinctions and some continuous variation, inter-taxon hybrids were fertile and heterotic for vigor traits. SPET genotyping revealed 1,421 high-quality SNPs and supported four, not three, distinct taxonomic entities associated with post-emergence geological, ecological and geographic factors of the islands. Given the lack of barriers to hybridization among all the taxa and their molecular differences, great care must be taken in population management. Conservation strategies must take account of the sexual and breeding systems and genotypic distribution among populations to successfully conserve and restore threatened/endangered island taxa, as exemplified by Solanum on the Canary Islands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA