Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 573(7772): 135-138, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462774

RESUMEN

An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes1-3. In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges4,5. However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Citoprotección , Insulina/metabolismo , Tiramina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo , Longevidad , Neuronas/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores de Catecolaminas/metabolismo , Transducción de Señal , Estrés Psicológico
2.
PLoS Genet ; 13(8): e1006965, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28820880

RESUMEN

Sirtuins are NAD⁺-dependent deacetylases, lipoamidases, and ADP-ribosyltransferases that link cellular metabolism to multiple intracellular pathways that influence processes as diverse as cell survival, longevity, and cancer growth. Sirtuins influence the extent of neuronal death in stroke. However, different sirtuins appear to have opposite roles in neuronal protection. In Caenorhabditis elegans, we found that knock-out of mitochondrial sirtuin sir-2.3, homologous to mammalian SIRT4, is protective in both chemical ischemia and hyperactive channel induced necrosis. Furthermore, the protective effect of sir-2.3 knock-out is enhanced by block of glycolysis and eliminated by a null mutation in daf-16/FOXO transcription factor, supporting the involvement of the insulin/IGF pathway. However, data in Caenorhabditis elegans cell culture suggest that the effects of sir-2.3 knock-out act downstream of the DAF-2/IGF-1 receptor. Analysis of ROS in sir-2.3 knock-out reveals that ROS become elevated in this mutant under ischemic conditions in dietary deprivation (DD), but to a lesser extent than in wild type, suggesting more robust activation of a ROS scavenging system in this mutant in the absence of food. This work suggests a deleterious role of SIRT4 during ischemic processes in mammals that must be further investigated and reveals a novel pathway that can be targeted for the design of therapies aimed at protecting neurons from death in ischemic conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/genética , Hidrolasas/genética , Isquemia/genética , Proteínas Mitocondriales/genética , Células Receptoras Sensoriales/metabolismo , Sirtuinas/genética , Animales , Azidas/toxicidad , Caenorhabditis elegans/genética , Muerte Celular/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucólisis/efectos de los fármacos , Humanos , Insulina/genética , Isquemia/patología , Mitocondrias/genética , Mitocondrias/patología , Necrosis/genética , Necrosis/patología , Especies Reactivas de Oxígeno/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Células Receptoras Sensoriales/efectos de los fármacos
3.
J Neurosci ; 35(50): 16377-97, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26674864

RESUMEN

An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3 (-) buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3 (-) uptake. While the classical mechanism of HCO3 (-) uptake involves Na(+)/HCO3 (-) cotransporters, here we demonstrate that the C. elegans ClC Cl(-) channel CLH-1 is highly permeable to HCO3 (-) and mediates HCO3 (-) uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl(-) channel. Our data suggest that, in addition to maintaining synaptic Cl(-) concentration, these channels may also be involved in maintenance of synaptic pH via HCO3 (-) flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. SIGNIFICANCE STATEMENT: Maintenance of pH is essential for the physiological function of the nervous system. HCO3 (-) is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3 (-) flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons.


Asunto(s)
Bicarbonatos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Neuroglía/metabolismo , Animales , Transporte Biológico Activo/fisiología , Tampones (Química) , Células Cultivadas , Fenómenos Electrofisiológicos/genética , Fenómenos Electrofisiológicos/fisiología , Expresión Génica , Genes Reporteros/genética , Concentración de Iones de Hidrógeno , ARN/biosíntesis , ARN/genética , Sinapsis/metabolismo
4.
J Membr Biol ; 246(2): 167-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23135060

RESUMEN

Increasing evidence suggests that trabecular meshwork (TM) cells participate in the regulation of intraocular pressure by controlling the rate of filtration of the aqueous humor. Ionic conductances that regulate cell volume and shape have been suggested to play an important role in TM cell volume regulation. Here, we compared ionic currents from TM cells derived from a normal subject (CTM) and from an individual affected by glaucoma (GTM). We found that while the ionic current types were similar, the current amplitudes and percentage of cells endowed with specific current at baseline were different in the two cell lines. Thus, we found that the majority of CTM cells were endowed with a swelling-activated Cl(-) current at baseline, whereas in the majority of GTM cells this current was not active at baseline and became activated only after perfusion with a hypotonic solution. An inward rectifier K(+) current was also more prevalent in CTM than in GTM cells. Our work suggests that disregulation of one or more of these ionic currents may be at the basis of TM cell participation in the development of glaucoma.


Asunto(s)
Glaucoma/metabolismo , Malla Trabecular/metabolismo , Línea Celular Tumoral , Electrofisiología , Humanos , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo
5.
Neurochem Res ; 38(4): 847-56, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397285

RESUMEN

X-linked inhibitor of apoptosis (XIAP) protects and preserves the function of neurons in both in vitro and in vivo models of excitotoxicity. Since calcium (Ca(2+)) overload is a pivotal event in excitotoxic neuronal cell death, we have determined whether XIAP over-expression influences Ca(2+)-signaling in primary cultures of mouse cortical neurons. Using cortical neuron cultures derived from wild-type (Wt) mice transiently transfected with XIAP or from transgenic mice that over-express XIAP, we show that XIAP opposes the rise in intracellular Ca(2+) concentration by a variety of triggers. Relative to control neurons, XIAP over-expression produced a slight, but significant, elevation of resting Ca(2+) concentrations. By contrast, the rise in intracellular Ca(2+) concentrations produced by N-methyl-D-aspartate receptor stimulation and voltage gated Ca(2+) channel activation were markedly attenuated by XIAP over-expression. The release of Ca(2+) from intracellular stores induced by the sarco/endoplasmic reticulum Ca(2+) ATPase inhibitor thapsigargin was also inhibited in neurons transiently transfected with XIAP. The pan-caspase inhibitor zVAD did not, however, diminish the rise in intracellular Ca(2+) concentrations elicited by L-glutamate suggesting that XIAP influences Ca(2+) signaling in a caspase-independent manner. Taken together, these findings demonstrate that the ability of XIAP to block excessive rises in intracellular Ca(2+) by a variety of triggers may contribute to the neuroprotective effects of this anti-apoptotic protein.


Asunto(s)
Señalización del Calcio/fisiología , Neuronas/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Ácido Glutámico/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Tapsigargina/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/genética
6.
Elife ; 82019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31364988

RESUMEN

Mutations in pre-synaptic voltage-gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(zf35gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(zf35gf) mutants. unc-2(zf35gf) mutants display increased cholinergic and decreased GABAergic transmission. Moreover, increased cholinergic transmission in unc-2(zf35gf) mutants leads to an increase of cholinergic synapses and a TAX-6/calcineurin-dependent reduction of GABA synapses. Our studies reveal mechanisms through which CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Mutación con Ganancia de Función , Proteínas de la Membrana/metabolismo , Proteínas Mutantes/metabolismo , Transmisión Sináptica , Animales , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Proteínas de la Membrana/genética , Proteínas Mutantes/genética
7.
PLoS One ; 10(3): e0118273, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25734498

RESUMEN

Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington's disease, Alzheimer's, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.


Asunto(s)
Biomarcadores de Tumor/genética , Calcio/metabolismo , Dolor Crónico/genética , Ganglios Espinales/metabolismo , Hiperalgesia/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas del Tejido Nervioso/genética , Animales , Biomarcadores de Tumor/deficiencia , Señalización del Calcio , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Citosol/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/fisiopatología , Regulación de la Expresión Génica , Prueba de Complementación Genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inflamación , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/metabolismo , Neuronas/patología , Nocicepción/fisiología , Fosforilación
8.
PLoS One ; 7(2): e31697, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363709

RESUMEN

The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.


Asunto(s)
Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Taquicininas/farmacología , Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Gusto/efectos de los fármacos , Animales , Calcio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroquinina A/farmacología , Nociceptores/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-2/genética , Receptores de Neuroquinina-2/metabolismo , Receptores de Taquicininas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Papilas Gustativas/efectos de los fármacos
9.
PLoS One ; 7(1): e30662, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292013

RESUMEN

Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.


Asunto(s)
Ácido Glutámico/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas Eferentes/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Inhibición Neural/fisiología , Neuronas Eferentes/metabolismo , Neuronas Eferentes/fisiología , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Fosfolipasa C beta/genética , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Transmisión Sináptica/genética , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiología
10.
Invest Ophthalmol Vis Sci ; 53(6): 2823-30, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22467573

RESUMEN

PURPOSE: To study the role of neuronal nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase-dependent reactive oxygen species (ROS) production in retinal ganglion cell (RGC) death after ischemia. METHODS: Ischemic injury was induced by unilateral elevation of intraocular pressure via direct corneal cannulation. For in vitro experiments, RGCs isolated by immunopanning from retinas were exposed to oxygen and glucose deprivation (OGD). The expression levels of NAD(P)H oxidase subunits were evaluated by quantitative PCR, immunocytochemistry, and immunohistochemistry. The level of ROS generated was assayed by dihydroethidium. The NAD(P)H oxidase inhibitors were then tested to determine if inhibition of NAD(P)H oxidase altered the production of ROS within the RGCs and promoted cell survival. RESULTS: It was reported that RGCs express catalytic Nox1, Nox2, Nox4, Duox1, as well as regulatory Ncf1/p47phox, Ncf2/p67phox, Cyba/p22phox, Noxo1, and Noxa1 subunits of NAD(P)H oxidases under normal conditions and after ischemia. However, whereas RGCs express only low levels of catalytic Nox2, Nox4, and Duox1, and regulatory Ncf1/p47, Ncf2/p67 subunits, they exhibit significantly higher levels of catalytic subunit Nox1 and the subunits required for optimal activity of Nox1. It was observed that the nonselective NAD(P)H oxidase inhibitors VAS-2870, AEBSF, and the Nox1 NAD(P)H oxidase-specific inhibitor ML-090 decreased the ROS burst stimulated by OGD, which was associated with a decreased level of RGC death. CONCLUSIONS: The findings suggest that NAD(P)H oxidase activity in RGCs renders them vulnerable to ischemic death. Importantly, high levels of Nox1 NAD(P)H oxidase subunits in RGCs suggest that this enzyme could be a major source of ROS in RGCs produced by NAD(P)H oxidases.


Asunto(s)
Muerte Celular/fisiología , Isquemia/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Inmunohistoquímica , Isquemia/enzimología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/enzimología
11.
Invest Ophthalmol Vis Sci ; 52(10): 7187-94, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21828158

RESUMEN

PURPOSE: High-mobility group protein B1 (Hmgb1) is released from necrotic cells and induces an inflammatory response. Although Hmgb1 has been implicated in ischemia/reperfusion (IR) injury of the brain, its role in IR injury of the retina remains unclear. Here, the authors provide evidence that Hmgb1 contributes to retinal damage after IR. METHODS: Retinal IR injury was induced by unilateral elevation of intraocular pressure and the level of Hmgb1 in vitreous humor was analyzed 24 hours after reperfusion. To test the functional significance of Hmgb1 release, ischemic or normal retinas were treated with the neutralizing anti-Hmgb1 antibody or recombinant Hmgb1 protein respectively. To elucidate in which cell type Hmgb1 exerts its effect, primary retinal ganglion cell (RGC) cultures and glia RGC cocultures were treated with Hmgb1. To clarify the downstream signaling pathways involved in Hmgb1-induced effects in the ischemic retina, receptor for advanced glycation end products (Rage)-deficient mice (RageKO) were used. RESULTS: Hmgb1 is accumulated in the vitreous humor 24 hours after IR. Inhibition of Hmgb1 activity with neutralizing antibody significantly decreased retinal damage after IR, whereas treatment of retinas or retinal cells with Hmgb1 induced a loss of RGCs. The analysis of RageKO versus wild-type mice showed significantly reduced expression of proinflammatory genes 24 hours after reperfusion and significantly increased survival of ganglion cell layer neurons 7 days after IR injury. CONCLUSIONS: These results suggest that an increased level of Hmgb1 and signaling via the Rage contribute to neurotoxicity after retinal IR injury.


Asunto(s)
Proteína HMGB1/fisiología , Daño por Reperfusión/metabolismo , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/farmacología , Western Blotting , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Técnica del Anticuerpo Fluorescente Indirecta , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Neuroglía/patología , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/farmacología , Daño por Reperfusión/patología , Enfermedades de la Retina/patología , Células Ganglionares de la Retina/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 4/metabolismo
12.
J Biol Chem ; 281(50): 38440-7, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17050533

RESUMEN

Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-beta(Abeta)-(1-42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Abeta-(1-42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Abeta-(1-42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Neuronas/fisiología , Fragmentos de Péptidos/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Animales , Secuencia de Bases , Calcio/metabolismo , Cartilla de ADN , Retículo Endoplásmico/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , ARN Mensajero/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA