Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(9): 2783-2795, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481704

RESUMEN

Hearing loss is a common disorder affecting nearly 20% of the world's population. Recently, studies have shown that inner ear gene therapy can improve auditory function in several mouse models of hereditary hearing loss. In most of these studies, the underlying mutations affect only a small number of cell types of the inner ear (e.g., sensory hair cells). Here, we applied inner ear gene therapy to the Ildr1Gt(D178D03)Wrst (Ildr1w-/-) mouse, a model of human DFNB42, non-syndromic autosomal recessive hereditary hearing loss associated with ILDR1 variants. ILDR1 is an integral protein of the tricellular tight junction complex and is expressed by diverse inner ear cell types in the organ of Corti and the cochlear lateral wall. We simultaneously applied two synthetic adeno-associated viruses (AAVs) with different tropism to deliver Ildr1 cDNA to the Ildr1w-/- mouse inner ear: one targeting the organ of Corti (AAV2.7m8) and the other targeting the cochlear lateral wall (AAV8BP2). We showed that combined AAV2.7m8/AAV8BP2 gene therapy improves cochlear structural integrity and auditory function in Ildr1w-/- mice.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Animales , Ratones , Receptores de Superficie Celular/genética , Sordera/genética , Sordera/terapia , Modelos Animales de Enfermedad , Terapia Genética
2.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674448

RESUMEN

Hearing loss affects ∼10% of adults worldwide. Most sensorineural hearing loss is caused by the progressive loss of mechanosensitive hair cells (HCs) in the cochlea. The molecular mechanisms underlying HC maintenance and loss remain poorly understood. LBH, a transcription co-factor implicated in development, is abundantly expressed in outer hair cells (OHCs). We used Lbh-null mice to identify its role in HCs. Surprisingly, Lbh deletion did not affect differentiation and the early development of HCs, as nascent HCs in Lbh knockout mice had normal looking stereocilia. The stereocilia bundle was mechanosensitive and OHCs exhibited the characteristic electromotility. However, Lbh-null mice displayed progressive hearing loss, with stereocilia bundle degeneration and OHC loss as early as postnatal day 12. RNA-seq analysis showed significant gene enrichment of biological processes related to transcriptional regulation, cell cycle, DNA damage/repair and autophagy in Lbh-null OHCs. In addition, Wnt and Notch pathway-related genes were found to be dysregulated in Lbh-deficient OHCs. Our study implicates, for the first time, loss of LBH function in progressive hearing loss, and demonstrates a critical requirement of LBH in promoting HC survival in adult mice.


Asunto(s)
Pérdida Auditiva , Factores de Transcripción , Animales , Cóclea , Células Ciliadas Auditivas Externas , Ratones , Estereocilios
3.
Proc Natl Acad Sci U S A ; 113(21): 5993-8, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162350

RESUMEN

Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Mutación , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Axones/metabolismo , Axones/patología , Línea Celular , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Humanos , Ratones , Ratones Mutantes , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Ganglio Espiral de la Cóclea/patología , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
4.
Hum Genet ; 137(6-7): 437-446, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29860631

RESUMEN

Identification of genes with variants causing non-syndromic hearing loss (NSHL) is challenging due to genetic heterogeneity. The difficulty is compounded by technical limitations that in the past prevented comprehensive gene identification. Recent advances in technology, using targeted capture and next-generation sequencing (NGS), is changing the face of gene identification and making it possible to rapidly and cost-effectively sequence the whole human exome. Here, we characterize a five-generation Chinese family with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining population-specific mutation arrays, targeted deafness genes panel, whole exome sequencing (WES), we identified PDE1C (Phosphodiesterase 1C) c.958G>T (p.A320S) as the disease-associated variant. Structural modeling insights into p.A320S strongly suggest that the sequence alteration will likely affect the substrate-binding pocket of PDE1C. By whole-mount immunofluorescence on postnatal day 3 mouse cochlea, we show its expression in outer (OHC) and inner (IHC) hair cells cytosol co-localizing with Lamp-1 in lysosomes. Furthermore, we provide evidence that the variant alters the PDE1C hydrolytic activity for both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Collectively, our findings indicate that the c.958G>T variant in PDE1C may disrupt the cross talk between cGMP-signaling and cAMP pathways in Ca2+ homeostasis.


Asunto(s)
Cóclea/crecimiento & desarrollo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Sordera/genética , Proteínas de Membrana de los Lisosomas/genética , Animales , Pueblo Asiatico/genética , Cóclea/metabolismo , Cóclea/fisiopatología , AMP Cíclico/genética , Sordera/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Dominantes , Genotipo , Homeostasis/genética , Humanos , Lisosomas/genética , Masculino , Ratones , Mutación , Linaje , Secuenciación del Exoma
5.
J Cell Physiol ; 232(4): 743-758, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27704564

RESUMEN

Ear is a complex system where appropriate ionic composition is essential for maintaining the tissue homeostasis and hearing function. Ion transporters and channels present in the auditory system plays a crucial role in maintaining proper ionic composition in the ear. The extracellular fluid, called endolymph, found in the cochlea of the mammalian inner ear is particularly unique due to its electrochemical properties. At an endocochlear potential of about +80 mV, signaling initiated by acoustic stimuli at the level of the hair cells is dependent on the unusually high potassium (K+ ) concentration of endolymph. There are ion channels and transporters that exists in the ear to ensure that K+ is continually being cycled into the stria media endolymph. This review is focused on the discussion of the molecular and genetic basis of previously and newly recognized ion channels and transporters that support sensory hair cell excitation based on recent knock-in and knock-out studies of these channels. This article also addresses the molecular and genetic defects and the pathophysiology behind Meniere's disease as well as how the dysregulation of these ion transporters can result in severe defects in hearing or even deafness. Understanding the role of ion channels and transporters in the auditory system will facilitate in designing effective treatment modalities against ear disorders including Meniere's disease and hearing loss. J. Cell. Physiol. 232: 743-758, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Vías Auditivas/metabolismo , Canales Iónicos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación/genética
6.
J Cell Physiol ; 232(10): 2710-2721, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27869308

RESUMEN

Ear is a sensitive organ involved in hearing and balance function. The complex signaling network in the auditory system plays a crucial role in maintaining normal physiological function of the ear. The inner ear comprises a variety of host signaling pathways working in synergy to deliver clear sensory messages. Any disruption, as minor as it can be, has the potential to affect this finely tuned system with temporary or permanent sequelae including vestibular deficits and hearing loss. Mutations linked to auditory symptoms, whether inherited or acquired, are being actively researched for ways to reverse, silence, or suppress them. In this article, we discuss recent advancements in understanding the pathways involved in auditory system signaling, from hair cell development through transmission to cortical centers. Our review discusses Notch and Wnt signaling, cell to cell communication through connexin and pannexin channels, and the detrimental effects of reactive oxygen species on the auditory system. There has been an increased interest in the auditory community to explore the signaling system in the ear for hair cell regeneration. Understanding signaling pathways in the auditory system will pave the way for the novel avenues to regenerate sensory hair cells and restore hearing function. J. Cell. Physiol. 232: 2710-2721, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Ciliadas Auditivas/metabolismo , Audición , Receptores Notch/metabolismo , Regeneración , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Vías Auditivas/metabolismo , Vías Auditivas/patología , Conexinas/metabolismo , Células Ciliadas Auditivas/patología , Humanos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , NADPH Oxidasas/metabolismo , Fenotipo
7.
J Cell Physiol ; 232(9): 2359-2372, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27512962

RESUMEN

Neurotransmitters, including catecholamines and serotonin, play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the "fight or flight" response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in GI and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, GI innate immune system, and the microbiome. Furthermore, in pathological states, such as inflammatory bowel disease (IBD) and Parkinson's disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of GI symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state-of-the-art research and literature regarding the role of neurotransmitters in regulation of normal GI physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. J. Cell. Physiol. 232: 2359-2372, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bacterias/metabolismo , Encéfalo/metabolismo , Catecolaminas/metabolismo , Sistema Nervioso Entérico/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/microbiología , Serotonina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/fisiopatología , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/microbiología , Enfermedades del Sistema Nervioso Central/fisiopatología , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Ácido gamma-Aminobutírico/metabolismo
8.
Hum Mol Genet ; 24(9): 2482-91, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25601850

RESUMEN

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


Asunto(s)
Cilios/metabolismo , Genes Recesivos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Secuencia de Aminoácidos , Animales , Línea Celular , Mapeo Cromosómico , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Proteína Doblecortina , Femenino , Expresión Génica , Genes Reporteros , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Pez Cebra
9.
Proc Natl Acad Sci U S A ; 111(27): 9864-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958875

RESUMEN

In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing.


Asunto(s)
Audición/fisiología , Proteínas/fisiología , Estereocilios/fisiología , Animales , Moléculas de Adhesión Celular , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Audición/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Ratones , Linaje , Proteínas/genética , Proteínas/metabolismo , Empalme del ARN , Fracciones Subcelulares/metabolismo , Turquía , Pez Cebra
10.
Hum Mutat ; 37(5): 481-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841241

RESUMEN

Hereditary hearing loss (HL) is characterized by both allelic and locus genetic heterogeneity. Both recessive and dominant forms of HL may be caused by different mutations in the same deafness gene. In a family with post-lingual progressive non-syndromic deafness, whole-exome sequencing of genomic DNA from five hearing-impaired relatives revealed a single variant, p.Gly488Glu (rs145970949:G>A) in MYO3A, co-segregating with HL as an autosomal dominant trait. This amino acid change, predicted to be pathogenic, alters a highly conserved residue in the motor domain of MYO3A. The mutation severely alters the ATPase activity and motility of the protein in vitro, and the mutant protein fails to accumulate in the filopodia tips in COS7 cells. However, the mutant MYO3A was able to reach the tips of organotypic inner ear culture hair cell stereocilia, raising the possibility of a local effect on positioning of the mechanoelectrical transduction (MET) complex at the stereocilia tips. To address this hypothesis, we investigated the interaction of MYO3A with the cytosolic tail of the integral tip-link protein protocadherin 15 (PCDH15), a core component of MET complex. Interestingly, we uncovered a novel interaction between MYO3A and PCDH15 shedding new light on the function of myosin IIIA at stereocilia tips.


Asunto(s)
Cadherinas/metabolismo , Sordera/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Animales , Células COS , Proteínas Relacionadas con las Cadherinas , Células Cultivadas , Niño , Preescolar , Chlorocebus aethiops , Sordera/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA