Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 27(4): 4504-4521, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876068

RESUMEN

We demonstrate a fast, flexible, and accurate paraxial wave propagation model to serve as a forward model for propagation-based X-ray phase contrast imaging (XPCI) in parallel-beam or cone-beam geometry. This model incorporates geometric cone-beam effects into the multi-slice beam propagation method. It enables rapid prototyping and is well suited to serve as a forward model for propagation-based X-ray phase contrast tomographic reconstructions. Furthermore, it is capable of modeling arbitrary objects, including those that are strongly or multi-scattering. Simulation studies were conducted to compare our model to other forward models in the X-ray regime, such as the Mie and full-wave Rytov solutions.

2.
Med Phys ; 47(11): 5761-5771, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32969031

RESUMEN

PURPOSE: Demonstrate realistic simulation of grating-based x-ray phase-contrast imaging (GB-XPCI) using wave optics and the four-dimensional Mouse Whole Body (MOBY) phantom defined with non-uniform rational B-splines (NURBS). METHODS: We use a full-wave approach, which uses wave optics for x-ray wave propagation from the source to the detector. This forward imaging model can be directly applied to NURBS-defined numerical phantoms such as MOBY. We assign the material properties (attenuation coefficient and electron density) of each model part using the data for adult human tissues. The Poisson noise is added to the simulated images based on the calculated photon flux at each pixel. RESULTS: We simulate the intensity images of the MOBY phantom for eight different grating positions. From the simulated images, we calculate the absorption, differential phase, and normalized visibility contrast images. We also predict how the image quality is affected by different exposure times. CONCLUSIONS: GB-XPCI can be simulated with the full-wave approach and a realistic numerical phantom defined with NURBS.


Asunto(s)
Fotones , Animales , Simulación por Computador , Ratones , Fantasmas de Imagen , Radiografía , Rayos X
3.
J Med Imaging (Bellingham) ; 4(4): 043503, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29201939

RESUMEN

X-ray phase-contrast imaging (XPCI) overcomes the problem of low contrast between different soft tissues achieved in conventional x-ray imaging by introducing x-ray phase as an additional contrast mechanism. This work describes a compact x-ray light source (CXLS) and compares, via simulations, the high quality XPCI results that can be produced from this source to those produced using a microfocus x-ray source. The simulation framework is first validated using an image acquired with a microfocus-source, propagation-based XPCI (PB-XPCI) system. The phase contrast for a water sphere simulating a simple cyst submersed in muscle is evaluated and the evolution of PB-XPCI signal as the object to detector distance is increased is demonstrated. The proposed design of a PB-XPCI system using the CXLS is described and simulated images of a coronary artery compared between CXLS and microfocus source PB-XPCI systems. To generate images with similar noise levels, a microfocus source would require a 3000 times longer exposure than would the CXLS. We conclude that CXLS technology has the potential to provide high-quality XPCI in a medical environment using extremely short exposure times relative to microfocus source approaches.

4.
ACS Nano ; 8(11): 11474-82, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25380557

RESUMEN

Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA