Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genomics ; 112(6): 5265-5274, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32966858

RESUMEN

The circular transcriptome of human glial cells is an area of neuroscience that has not been thoroughly elucidated. Circular RNAs (circRNAs) have the potential to facilitate the understanding of vast, complex and unknown mechanisms derived from the human transcriptome, including elements of the human brain that are not known and the evolution of the human brain, the complexities of which are not well understood. Moreover, the glial cells have been determined to contribute to human brain evolution. This study presents the first comprehensive analysis of the human brain glia circRNA transcriptome, that is, astrocytes, microglia and oligodendrocytes. After stringent criteria applied to the detection of circRNAs, it was found that the circular transcriptomes of these glia are unique from one another, and hence might be indicative of distinct roles for circRNAs within the brain. This study found 265, 239 and 442 circRNAs comprising the unique circular transcriptome of astrocytes, microglia and oligodendrocytes, respectively. The most abundant circRNAs in these glial cell types are expressed by parent genes co-expressing linear RNAs in low abundance, suggesting spliceosome activity favorable to the back-splicing mechanism instead of canonical splicing activity.


Asunto(s)
Neuroglía/metabolismo , ARN Circular/metabolismo , Astrocitos/metabolismo , Ontología de Genes , Humanos , Microglía/metabolismo , Oligodendroglía/metabolismo , RNA-Seq , Transcriptoma
2.
Front Genet ; 11: 564301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101384

RESUMEN

Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs), and their expression is altered in diverse disorders, including cancer, cardiovascular disease, and Parkinson's disease. Here, we compare circRNA expression patterns in the temporal cortex and hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant differential expression, including circRNA-HOMER1, which is expressed in synapses. Further, we identified miRNA binding sites within the sequences of differentially expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed functions in heterocyclic compound binding, regulation of transcription, and signal transduction, which maintain the structure and function of hippocampal neurons. The circRNA-miRNA-mRNA interaction networks illuminate the molecular changes in MTLE, which may be pathogenic or an effect of the disease or treatments and suggests that DE circRNAs and associated miRNAs may be novel therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA