Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 17(1): 24, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885209

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) results in changes that promote de-differentiation, migration, and invasion in non-small cell lung cancer (NSCLC). While it is recognized that EMT promotes altered energy utilization, identification of metabolic pathways that link EMT with cancer progression is needed. Work presented here indicates that mesenchymal NSCLC upregulates glutamine-fructose-6-phosphate transaminase 2 (GFPT2). GFPT2 is the rate-limiting enzyme in the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the obligate activator of O-linked N-acetylglucosamine transferase (OGT). METHODS: Analysis of our transcriptomic data indicates that GFPT2 is one of the most significantly upregulated metabolic genes in mesenchymal NSCLC. Ectopic GFPT2 expression, as well as gene silencing strategies were used to determine the importance of this metabolic enzyme in regulating EMT-driven processes of cell motility and invasion. RESULTS: Our work demonstrates that GFPT2 is transcriptionally upregulated by NF-κB and repressed by the NAD+-dependent deacetylase SIRT6. Depletion of GFPT2 expression in NSCLC highlights its importance in regulating cell migration and invasion during EMT. CONCLUSIONS: Consistent with GFPT2 promoting cancer progression, we find that elevated GFPT2 expression correlates with poor clinical outcome in NSCLC. Modulation of GFPT2 activity offers a potentially important therapeutic target to combat NSCLC disease progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Sirtuinas/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Transducción de Señal , Activación Transcripcional
2.
Proc Natl Acad Sci U S A ; 109(42): 16888-93, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027940

RESUMEN

The molecular mechanisms linking glucose metabolism with active transcription remain undercharacterized in mammalian cells. Using nuclear factor-κB (NF-κB) as a glucose-responsive transcription factor, we show that cells use the hexosamine biosynthesis pathway and O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) to potentiate gene expression in response to tumor necrosis factor (TNF) or etoposide. Chromatin immunoprecipitation assays demonstrate that, upon induction, OGT localizes to NF-κB-regulated promoters to enhance RelA acetylation. Knockdown of OGT abolishes p300-mediated acetylation of RelA on K310, a posttranslational mark required for full NF-κB transcription. Mapping studies reveal T305 as an important residue required for attachment of the O-GlcNAc moiety on RelA. Furthermore, p300 fails to acetylate a full-length RelA(T305A) mutant, linking O-GlcNAc and acetylation events on NF-κB. Reconstitution of RelA null cells with the RelA(T305A) mutant illustrates the importance of this residue for NF-κB-dependent gene expression and cell survival. Our work provides evidence for a unique regulation where attachment of the O-GlcNAc moiety to RelA potentiates p300 acetylation and NF-κB transcription.


Asunto(s)
Acetilglucosamina/metabolismo , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Redes y Vías Metabólicas/fisiología , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Acetilación , Inmunoprecipitación de Cromatina , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática , Etopósido/metabolismo , Células HEK293 , Hexosaminas/biosíntesis , Humanos , Immunoblotting , Inmunoprecipitación , Luciferasas , Redes y Vías Metabólicas/genética , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Biol Chem ; 287(1): 581-588, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22084251

RESUMEN

The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Acetilación , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células HEK293 , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/química , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA