Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(5): 969-986, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37526361

RESUMEN

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Niño , Animales , Gatos , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/veterinaria , Insuficiencia Multiorgánica/terapia , Vectores Genéticos , Sistema Nervioso Central/patología , Terapia Genética
2.
Brain ; 145(2): 655-669, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34410345

RESUMEN

GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal ß-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral (AAV) vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline ß-galactosidase was intravenously administered at 1.5×1013 vector genomes/kg body weight to six GM1 cats at ∼1 month of age. The animals were divided into two cohorts: (i) a long-term group, which was followed to humane end point; and (ii) a short-term group, which was analysed 16 weeks post-treatment. Clinical assessments included neurological exams, CSF and urine biomarkers, and 7 T MRI and magentic resonance spectroscopy (MRS). Post-mortem analysis included ß-galactosidase and virus distribution, histological analysis and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurological function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. CSF biomarkers were normalized, indicating decreased CNS cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. MRI and MRS showed partial preservation of the brain in treated animals, which was supported by post-mortem histological evaluation. ß-Galactosidase activity was increased throughout the CNS, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and CSF. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal ß-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of ß-galactosidase activity in the CNS and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. These data support the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.


Asunto(s)
Gangliosidosis GM1 , Enfermedades Neurodegenerativas , Animales , Biomarcadores , Gatos , Dependovirus/genética , Gangliósido G(M1)/uso terapéutico , Gangliósidos , Gangliosidosis GM1/genética , Gangliosidosis GM1/patología , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Humanos , Calidad de Vida , Distribución Tisular , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
3.
Mol Ther ; 30(7): 2416-2428, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585789

RESUMEN

We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.


Asunto(s)
Trastornos Mentales , Medicina de Precisión , Humanos , Trastornos Mentales/genética , Trastornos Mentales/psicología , Trastornos Mentales/terapia , Enfermedades Raras , Estados Unidos , United States Food and Drug Administration
4.
PLoS Genet ; 16(12): e1008671, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290415

RESUMEN

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Encefalopatías/veterinaria , Enfermedades de los Gatos/genética , Corteza Cerebral/metabolismo , Mutación con Pérdida de Función , Fosfoproteínas/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Encefalopatías/genética , Encefalopatías/patología , Enfermedades de los Gatos/patología , Gatos , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Neurogénesis , Fosfoproteínas/metabolismo
5.
Mol Ther ; 29(9): 2806-2820, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34298128

RESUMEN

Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques. The report describes distribution of each capsid in 15 areas of the macaques' CNS after intraparenchymal (putamen) injection, or cerebrospinal fluid (CSF)-mediated administration routes (intracisternal, intrathecal, or intracerebroventricular). To trace the vector biodistribution (viral DNA) and targeted tissues transduction (viral mRNA) of each capsid in each of the analyzed CNS areas, quantitative next-generation sequencing analysis, assisted by the digital-droplet PCR technology, was used. The report describes the most efficient AAV capsid variants targeting specific CNS areas after each route of administration using the direct side-by-side comparison of WT AAV isolates and a new generation of rationally designed capsids. The newly developed bioinformatics and visualization algorithms, applicable to the comparative analysis of several mammalian brain models, have been developed and made available in the public domain.


Asunto(s)
Proteínas de la Cápside/genética , Sistema Nervioso Central/química , Dependovirus/fisiología , Vectores Genéticos/administración & dosificación , Algoritmos , Animales , Sistema Nervioso Central/virología , ADN Viral/genética , Bases de Datos Genéticas , Dependovirus/genética , Vías de Administración de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Primates , ARN Mensajero/genética , ARN Viral/genética , Distribución Tisular , Transducción Genética
6.
Gene Ther ; 28(3-4): 142-154, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32884151

RESUMEN

Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by defects in the ß-subunit of ß-N-acetylhexosaminidase (Hex), the enzyme that catabolizes GM2 ganglioside. Hex deficiency causes neuronal storage of GM2 and related glycoconjugates, resulting in progressive neurodegeneration and death, typically in infancy. No effective treatment exists for human patients. Adeno-associated virus (AAV) gene therapy led to improved clinical outcome and survival of SD cats treated before the onset of disease symptoms. Most human patients are diagnosed after clinical disease onset, so it is imperative to test AAV-gene therapy in symptomatic SD cats to provide a realistic indication of therapeutic benefits that can be expected in humans. In this study, AAVrh8 vectors injected into the thalamus and deep cerebellar nuclei of symptomatic SD cats resulted in widespread central nervous system enzyme distribution, although a substantial burden of storage material remained. Cats treated in the early symptomatic phase showed delayed disease progression and a significant survival increase versus untreated cats. Treatment was less effective when administered later in the disease course, although therapeutic benefit was still possible. Results are encouraging for the treatment of human patients and provide support for the development AAV-gene therapy for human SD.


Asunto(s)
Enfermedad de Sandhoff , Animales , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genética
7.
Mol Genet Metab ; 134(1-2): 164-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456134

RESUMEN

Tay-Sachs disease (TSD) is a fatal neurodegenerative disease caused by a deficiency of the enzyme ß-N-acetylhexosaminidase A (HexA). TSD naturally occurs in Jacob sheep is the only experimental model of TSD. TSD in sheep recapitulates neurologic features similar to juvenile onset and late onset TSD patients. Due to the paucity of human literature on pathology of TSD, a better natural history in the sheep TSD brain, which is on the same order of magnitude as a child's, is necessary for evaluating therapy and characterizing the pathological events that occur. To provide clinicians and researchers with a clearer understanding of longitudinal pathology in patients, we compare spectrum of clinical signs and brain pathology in mildly symptomatic (3-months), moderately symptomatic (6-months), or severely affected TSD sheep (humane endpoint at ~9-months of age). Increased GM2 ganglioside in the CSF of TSD sheep and a TSD specific biomarker on MRS (taurine) correlate with disease severity. Microglial activation and reactive astrocytes were observed globally on histopathology in TSD sheep with a widespread reduction in oligodendrocyte density. Myelination is reduced primarily in the forebrain illustrated by loss of white matter on MRI. GM2 and GM3 ganglioside were increased and distributed differently in various tissues. The study of TSD in the sheep model provides a natural history to shed light on the pathophysiology of TSD, which is of utmost importance due to novel therapeutics being assessed in human patients.


Asunto(s)
Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Ovinos , Enfermedad de Tay-Sachs/fisiopatología , Enfermedad de Tay-Sachs/veterinaria , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedad de Tay-Sachs/genética
8.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592687

RESUMEN

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Enfermedad de Sandhoff/terapia , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Mutación , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , Transgenes , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
9.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31813800

RESUMEN

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Asunto(s)
Cisterna Magna/metabolismo , Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Transducción Genética , Animales , Catéteres , Sistema Nervioso Central/metabolismo , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Espinales , Imagen por Resonancia Magnética , Modelos Animales , Ovinos , Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Transgenes , Grabación en Video
10.
Mol Ther ; 25(4): 892-903, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28236574

RESUMEN

GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.


Asunto(s)
Biomarcadores , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Terapia Genética , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Gatos , Dependovirus/clasificación , Dependovirus/genética , Modelos Animales de Enfermedad , Electroencefalografía , Gangliosidosis GM1/mortalidad , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Resultado del Tratamiento
11.
Mol Ther ; 24(4): 726-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708003

RESUMEN

Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.


Asunto(s)
Proteínas de la Cápside/metabolismo , Sistema Nervioso Central/metabolismo , Péptidos/genética , Transducción Genética , Animales , Células CHO , Proteínas de la Cápside/genética , Gatos , Línea Celular , Cricetulus , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/genética , Ratones , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
12.
Mol Ther ; 24(7): 1247-57, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27117222

RESUMEN

Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, ß-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.


Asunto(s)
Proteínas de la Cápside/genética , Sistema Nervioso Central/metabolismo , Dependovirus/fisiología , Vectores Genéticos/genética , Músculos/metabolismo , Transducción Genética , Tropismo Viral , Animales , Proteínas de la Cápside/química , Dependovirus/clasificación , Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Transgenes
13.
Mol Genet Metab ; 116(1-2): 80-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25971245

RESUMEN

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


Asunto(s)
Terapia Genética , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/uso terapéutico , Adenoviridae/genética , Estructuras Animales/patología , Animales , Gatos , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/patología , Mucopolisacaridosis/terapia , Fenotipo , Enfermedad de Sandhoff/fisiopatología , Enfermedad de Sandhoff/orina
14.
Mol Ther ; 21(7): 1306-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23689599

RESUMEN

Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.


Asunto(s)
Enfermedades de los Gatos/enzimología , Enfermedades de los Gatos/terapia , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Enfermedades de los Gatos/genética , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/genética , Enfermedad de Sandhoff/genética , beta-N-Acetilhexosaminidasas/genética
15.
J Vet Intern Med ; 37(5): 1716-1724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37594181

RESUMEN

BACKGROUND: Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue disorders occurring in both human and veterinary patients. The genetics of these disorders are poorly described in small animal patients. HYPOTHESIS/OBJECTIVES: Define the clinical manifestations and genetic cause of a suspected form of EDS in a cat. ANIMALS: A 14-week-old male domestic medium hair cat was presented with skin hyperextensibility and fragility. The classic tragic facial expression was observed as well as chronic pruritus and mild hyperesthesia. METHODS: Blood samples and a skin biopsy sample were collected from the affected cat. Clinical examinations, histology, electron microscopy and whole genome sequencing were conducted to characterize the clinical presentation and identify possible pathogenic DNA variants to support a diagnosis. Criteria defining variant pathogenicity were examined including human disease variant databases. RESULTS: Histology showed sparse, disorganized collagen and an increase in cutaneous mast cells. Electron microscopy identified ultrastructural defects commonly seen in collagen type V alpha 1 chain (COL5A1) variants including flower-like collagen fibrils in cross-section. Whole genome sequencing and comparison with 413 cats in the 99 Lives Cat Genome Sequencing Consortium database identified a novel splice acceptor site variant at exon 4 in COL5A1 (c.501-2A>C). CONCLUSIONS AND CLINICAL IMPORTANCE: Our report broadens the current understanding of EDS in veterinary patients and supports the use of precision medicine techniques in clinical veterinary practice. The classification of variants for pathogenicity should be considered in companion animals.


Asunto(s)
Enfermedades de los Gatos , Síndrome de Ehlers-Danlos , Anomalías Cutáneas , Humanos , Masculino , Gatos , Animales , Medicina de Precisión/veterinaria , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/veterinaria , Síndrome de Ehlers-Danlos/patología , Anomalías Cutáneas/veterinaria , Colágeno , Secuenciación Completa del Genoma/veterinaria , Mutación , Colágeno Tipo V/genética , Enfermedades de los Gatos/genética
16.
J Huntingtons Dis ; 12(3): 201-213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661892

RESUMEN

BACKGROUND: Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE: The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS: Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS: Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was  23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS: These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.

17.
Mol Ther Methods Clin Dev ; 30: 303-314, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37601414

RESUMEN

Gene replacement therapy is a rational therapeutic strategy and clinical intervention for neurodegenerative disorders like Canavan disease, a leukodystrophy caused by biallelic mutations in the aspartoacylase (ASPA) gene. We aimed to investigate whether simultaneous intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of rAAV9-CB6-ASPA provides a safe and effective therapeutic strategy in an open-label, individual-patient, expanded-access trial for Canavan disease. Immunomodulation was given prophylactically prior to adeno-associated virus (AAV) treatment to prevent an immune response to ASPA or the vector capsid. The patient served as his own control, and change from baseline was assessed by clinical pathology tests, vector genomes in the blood, antibodies against ASPA and AAV capsids, levels of cerebrospinal fluid (CSF) N-acetylaspartate (NAA), brain water content and morphology, clinical status, and motor function tests. Two years post treatment, the patient's white matter myelination had increased, motor function was improved, and he remained free of typical severe epilepsy. NAA level was reduced at 3 months and remained stable up to 4 years post treatment. Immunomodulation prior to AAV exposure enables repeat dosing and has prevented an anti-transgene immune response. Dual-route administration of gene therapy may improve treatment outcomes.

18.
EBioMedicine ; 92: 104627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37267847

RESUMEN

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Asunto(s)
Gangliosidosis GM1 , Enfermedades Neurodegenerativas , Animales , Gangliosidosis GM1/genética , Gangliosidosis GM1/terapia , Gangliosidosis GM1/patología , Enfermedades Neurodegenerativas/terapia , Cromatografía Liquida , Espectrometría de Masas en Tándem , beta-Galactosidasa/genética , beta-Galactosidasa/química , beta-Galactosidasa/uso terapéutico , Biomarcadores/líquido cefalorraquídeo , Terapia Genética
19.
Mol Ther Methods Clin Dev ; 31: 101122, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37920238

RESUMEN

Oligonucleotide therapeutics offer great promise in the treatment of previously untreatable neurodegenerative disorders; however, there are some challenges to overcome in pre-clinical studies. (1) They carry a well-established dose-related acute neurotoxicity at the time of administration. (2) Repeated administration into the cerebrospinal fluid may be required for long-term therapeutic effect. Modifying oligonucleotide formulation has been postulated to prevent acute toxicity, but a sensitive and quantitative way to track seizure activity in pre-clinical studies is lacking. The use of intracerebroventricular (i.c.v.) catheters offers a solution for repeated dosing; however, fixation techniques in large animal models are not standardized and are not reliable. Here we describe a novel surgical technique in a sheep model for i.c.v. delivery of neurotherapeutics based on the fixation of the i.c.v. catheter with a 3D-printed anchorage system composed of plastic and ceramic parts, compatible with magnetic resonance imaging, computed tomography, and electroencephalography (EEG). Our technique allowed tracking electrical brain activity in awake animals via EEG and video recording during and for the 24-h period after administration of a novel oligonucleotide in sheep. Its anchoring efficiency was demonstrated for at least 2 months and will be tested for up to a year in ongoing studies.

20.
Hum Gene Ther ; 33(17-18): 889-892, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074937

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapies have provided promising treatments for numerous neurological disorders. Redosing of AAV to the central nervous system (CNS) is an attractive research area due to both the somewhat immunologically privileged status of the CNS as well as the possibility of reduced glial transgene expression over time following a single injection. Continued study of the immune responses to both intraparenchymal and intra-CSF delivery of AAV mediated gene therapies, as well as the continued study of immunosuppressive regimens, could allow for eventual redosing in patients.


Asunto(s)
Dependovirus , Vectores Genéticos , Sistema Nervioso Central/metabolismo , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Humanos , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA