Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422022

RESUMEN

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Asunto(s)
Linfoma de Células B , Proteínas Represoras , Animales , Ratones , Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Microambiente Tumoral
2.
Br J Pharmacol ; 181(10): 1509-1523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38148720

RESUMEN

GPR84 was first identified as an open reading frame encoding an orphan Class A G protein coupled receptor in 2001. Gpr84 mRNA is expressed in a limited number of cell types with the highest levels of expression being in innate immune cells, M1 polarised macrophages and neutrophils. The first reported ligands for this receptor were medium chain fatty acids with chain lengths between 9 and 12 carbons. Subsequently, a series of synthetic agonists that signal via the GPR84 receptor were identified. Radioligand binding assays and molecular modelling with site-directed mutagenesis suggest the presence of three ligand binding sites on the receptor, but the physiological agonist(s) of the receptor remain unidentified. Here, we review the effects of GPR84 agonists on innate immune cells following a series of chemical discoveries since 2001. The development of highly biased agonists has helped to probe receptor function in vitro, and the remaining challenge is to follow the effects of biased signalling to the physiological functions of innate immune cell types. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Macrófagos , Ligandos , Fagocitosis
3.
Cells ; 13(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891050

RESUMEN

Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.


Asunto(s)
Antígenos Ly , Diferenciación Celular , Inflamación , Macrófagos , Monocitos , Fosforilación Oxidativa , Monocitos/metabolismo , Animales , Macrófagos/metabolismo , Inflamación/patología , Inflamación/metabolismo , Humanos , Ratones , Antígenos Ly/metabolismo , Quimiotaxis , Ratones Endogámicos C57BL , Peritonitis/metabolismo , Peritonitis/inducido químicamente , Peritonitis/patología , Zimosan/farmacología , Mitocondrias/metabolismo , Reprogramación Celular
4.
Eur J Pharmacol ; 969: 176437, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417608

RESUMEN

Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Sunitinib/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Reposicionamiento de Medicamentos , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo
5.
J Med Chem ; 67(1): 110-137, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38146625

RESUMEN

Orphan G-protein-coupled receptor 84 (GPR84) is a receptor that has been linked to cancer, inflammatory, and fibrotic diseases. We have reported DL-175 as a biased agonist at GPR84 which showed differential signaling via Gαi/cAMP and ß-arrestin, but which is rapidly metabolized. Herein, we describe an optimization of DL-175 through a systematic structure-activity relationship (SAR) analysis. This reveals that the replacement of the naphthalene group improved metabolic stability and the addition of a 5-hydroxy substituent to the pyridine N-oxide group, yielding compounds 68 (OX04528) and 69 (OX04529), enhanced the potency for cAMP signaling by 3 orders of magnitude to low picomolar values. Neither compound showed detectable effects on ß-arrestin recruitment up to 80 µM. Thus, the new GPR84 agonists 68 and 69 displayed excellent potency, high G-protein signaling bias, and an appropriate in vivo pharmacokinetic profile that will allow investigation of GPR84 biased agonist activity in vivo.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Relación Estructura-Actividad
6.
Diabetes ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38193882

RESUMEN

Bruton's tyrosine kinase (BTK) is a non-receptor bound kinase involved in pro-inflammatory signalling in activated macrophages, however, its role within adipose tissue macrophages remains unclear. We have demonstrated that BTK signalling regulates macrophage M2-like polarisation state by up-regulating subunits of mitochondrially encoded electron transport chain Complex I (ND4 and NDL4) and Complex IV (mt-CO1, mt-CO2 and mt-CO3) resulting in an enhanced rate of oxidative phosphorylation (OxPhos) in an NF-κB independent manner. Critically, BTK expression is elevated in adipose tissue macrophages from obese individuals with diabetes, while key mitochondrial genes (mtC01, mtC02 and mtC03) are decreased in inflammatory myeloid cells from obese individuals. Inhibition of BTK signalling either globally (Xid mice) or in myeloid cells (LysMCreBTK), or therapeutically (Acalabrutinib) protects HFD-fed mice from developing glycaemic dysregulation by improving signalling through the IRS1/Akt/GSK3ß pathway. The beneficial effects of acalabrutinib treatment are lost in macrophage ablated mice. Inhibition of BTK signalling in myeloid cells but not B-cells, induced a phenotypic switch in adipose tissue macrophages from a pro-inflammatory M1-state to a pro-resolution M2-like phenotype, by shifting macrophage metabolism towards OxPhos. This reduces both local and systemic inflammation and protected mice from the immunometabolic consequences of obesity. Therefore, in BTK we have identified a macrophage specific, druggable target that can regulate adipose tissue polarisation and cellular metabolism that can confer systematic benefit in metabolic syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA