Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 532(7599): 334-9, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27049939

RESUMEN

The serotonin transporter (SERT) terminates serotonergic signalling through the sodium- and chloride-dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signalling. Here we report X-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8 and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and transmembrane helices 1, 6, 10 and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT, and provide blueprints for future drug design.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Antidepresivos/química , Antidepresivos/metabolismo , Antidepresivos/farmacología , Citalopram/química , Citalopram/metabolismo , Citalopram/farmacología , Cristalografía por Rayos X , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Diseño de Fármacos , Espacio Extracelular/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Espacio Intracelular/metabolismo , Iones/química , Iones/metabolismo , Ligandos , Modelos Moleculares , Paroxetina/química , Paroxetina/metabolismo , Paroxetina/farmacología , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/inmunología , Relación Estructura-Actividad
2.
Proc Natl Acad Sci U S A ; 115(39): E9095-E9104, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30190435

RESUMEN

Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca2+-binding site (Cai2+), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca2+ to a cytoplasmic site (Caa2+). An X-ray structure with Caa2+ removed and a near-atomic resolution cryo-EM structure with Cai2+ removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca2+ ions for activation.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Canales de Calcio/química , Activación del Canal Iónico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Relación Estructura-Actividad
3.
Sci Adv ; 8(10): eabm2536, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275719

RESUMEN

Human cytomegalovirus (HCMV) represents the viral leading cause of congenital birth defects and uses the gH/gL/UL128-130-131A complex (Pentamer) to enter different cell types, including epithelial and endothelial cells. Upon infection, Pentamer elicits the most potent neutralizing response against HCMV, representing a key vaccine candidate. Despite its relevance, the structural basis for Pentamer receptor recognition and antibody neutralization is largely unknown. Here, we determine the structures of Pentamer bound to neuropilin 2 (NRP2) and a set of potent neutralizing antibodies against HCMV. Moreover, we identify thrombomodulin (THBD) as a functional HCMV receptor and determine the structures of the Pentamer-THBD complex. Unexpectedly, both NRP2 and THBD also promote dimerization of Pentamer. Our results provide a framework for understanding HCMV receptor engagement, cell entry, antibody neutralization, and outline strategies for antiviral therapies against HCMV.

4.
PLoS One ; 16(5): e0250318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983947

RESUMEN

Viral infection and pathogenesis is mediated by host protein-viral protein complexes that are important targets for therapeutic intervention as they are potentially less prone to development of drug resistance. We have identified human, recombinant antibodies (Fabs) from a phage display library that bind to three HIV-host complexes. We used these Fabs to 1) stabilize the complexes for structural studies; and 2) facilitate characterization of the function of these complexes. Specifically, we generated recombinant Fabs to Vif-CBF-ß-ELOB-ELOC (VCBC); ESCRT-I complex and AP2-complex. For each complex we measured binding affinities with KD values of Fabs ranging from 12-419 nM and performed negative stain electron microscopy (nsEM) to obtain low-resolution structures of the HIV-Fab complexes. Select Fabs were converted to scFvs to allow them to fold intracellularly and perturb HIV-host protein complex assembly without affecting other pathways. To identify these recombinant Fabs, we developed a rapid screening pipeline that uses quantitative ELISAs and nsEM to establish whether the Fabs have overlapping or independent epitopes. This pipeline approach is generally applicable to other particularly challenging antigens that are refractory to immunization strategies for antibody generation including multi-protein complexes providing specific, reproducible, and renewable antibody reagents for research and clinical applications. The curated antibodies described here are available to the scientific community for further structural and functional studies on these critical HIV host-factor proteins.


Asunto(s)
VIH-1/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Anticuerpos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Complejos Multiproteicos/metabolismo , Unión Proteica , Replicación Viral/fisiología
5.
Curr Opin Biotechnol ; 60: 153-158, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30849700

RESUMEN

Antibodies (Abs) are ubiquitous reagents for biological and biochemical research and are rapidly expanding into new therapeutic areas. They are one of the most important probes for determining how proteins function under normal and pathophysiological conditions. Abs are required for the quantification of targets, detection of temporal and spatial patterns of protein expression in cells and tissues, and identification of interacting partners and their biological activities. Their remarkable specificity and unique binding properties can facilitate three-dimensional structure determination using X-ray crystallography and electron cryomicroscopy. While hybridoma technology that involves animal immunization is often productive, many antigen targets do not generate useful Abs. This is particularly true if unique states of the target or critical non-immunogenic target sequences need to be recognized by the Abs. By using the methods of recombinant antibody generation, identification, and engineering, these 'hybridoma-refractory' antigens can be readily targeted. Specific, reproducible, and renewable recombinant Abs are proving to be invaluable reagents in applications ranging from biological discovery to structure determination of challenging macromolecules.


Asunto(s)
Anticuerpos/inmunología , Animales , Inmunización , Proteínas Recombinantes
6.
Antibodies (Basel) ; 8(4)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694242

RESUMEN

A promising molecular target for aggressive cancers is the urokinase receptor (uPAR). A fully human, recombinant antibody that binds uPAR to form a stable complex that blocks uPA-uPAR interactions (2G10) and is internalized primarily through endocytosis showed efficacy in a mouse xenograft model of highly aggressive, triple negative breast cancer (TNBC). Antibody-drug conjugates (ADCs) of 2G10 were designed and produced bearing tubulin inhibitor payloads ligated through seven different linkers. Aldehyde tag technology was employed for linking, and either one or two tags were inserted into the antibody heavy chain, to produce site-specifically conjugated ADCs with drug-to-antibody ratios of either two or four. Both cleavable and non-cleavable linkers were combined with two different antimitotic toxins-MMAE (monomethylauristatin E) and maytansine. Nine different 2G10 ADCs were produced and tested for their ability to target uPAR in cell-based assays and a mouse model. The anti-uPAR ADC that resulted in tumor regression comprised an MMAE payload with a cathepsin B cleavable linker, 2G10-RED-244-MMAE. This work demonstrates in vitro activity of the 2G10-RED-244-MMAE in TNBC cell lines and validates uPAR as a therapeutic target for TNBC.

7.
Biol Open ; 7(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037883

RESUMEN

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

8.
J Vis Exp ; (117)2016 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-27929454

RESUMEN

The serotonin transporter is a sodium and chloride-coupled transporter that "pumps" extracellular serotonin into cells. S-citalopram is a drug used to treat depression and anxiety by binding to the serotonin transporter with high-affinity, blocking serotonin reuptake. Here we report an efficient procedure and a set of tools to stabilize, express, purify, and crystallize serotonin transporter-antibody complexes bound to S-citalopram and other antidepressants. Mutations which stabilize the serotonin transporter were identified using an S-citalopram binding assay. Serotonin transporter expressed in baculovirus-transduced HEK293S GnTI- cells, was reconstituted into proteoliposomes and used to raise high-affinity antibodies. We have developed a strategy to discover antibodies that are useful for structural studies. A straightforward approach for the expression of antibody fragments in Sf9 cells has also been established. Transporter-antibody complexes purified using this procedure are well-behaved and readily crystallize, producing complexes with S-citalopram that diffract X-rays to 3-4 Å resolution. The strategies developed here can be utilized to determine the structure of other challenging membrane proteins.


Asunto(s)
Citalopram/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Cristalización , Humanos , Unión Proteica , Serotonina , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/aislamiento & purificación , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina
9.
Elife ; 52016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27111525

RESUMEN

Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.


Asunto(s)
Análisis Mutacional de ADN , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Ubiquitina/genética , Ubiquitina/metabolismo , Biología/educación , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/fisiología , Estudiantes , Universidades
10.
PLoS One ; 10(12): e0145688, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26695939

RESUMEN

Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT). In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT) construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations-Y110A, I291A and T439S -that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm) 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant-I291A and T439S-defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT.


Asunto(s)
Antidepresivos Tricíclicos/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Sustitución de Aminoácidos , Transporte Biológico Activo , Células HEK293 , Humanos , Mutación Missense , Estabilidad Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA