Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 438(7069): 792-5, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16319828

RESUMEN

The surface of Saturn's largest satellite--Titan--is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion. The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system. Here we report measurements made just above and on the surface of Titan by the Huygens Surface Science Package. Acoustic sounding over the last 90 m above the surface reveals a relatively smooth, but not completely flat, surface surrounding the landing site. Penetrometry and accelerometry measurements during the probe impact event reveal that the surface was neither hard (like solid ice) nor very compressible (like a blanket of fluffy aerosol); rather, the Huygens probe landed on a relatively soft solid surface whose properties are analogous to wet clay, lightly packed snow and wet or dry sand. The probe settled gradually by a few millimetres after landing.

2.
Science ; 347(6220): aaa3905, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613898

RESUMEN

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

3.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170290

RESUMEN

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

4.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170294

RESUMEN

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

5.
Science ; 307(5713): 1274-6, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15731446

RESUMEN

During Cassini's approach to Saturn, the Cosmic Dust Analyser (CDA) discovered streams of tiny (less than 20 nanometers) high-velocity (approximately 100 kilometers per second) dust particles escaping from the saturnian system. A fraction of these impactors originated from the outskirts of Saturn's dense A ring. The CDA time-of-flight mass spectrometer recorded 584 mass spectra from the stream particles. The particles consist predominantly of oxygen, silicon, and iron, with some evidence of water ice, ammonium, and perhaps carbon. The stream particles primarily consist of silicate materials, and this implies that the particles are impurities from the icy ring material rather than the ice particles themselves.


Asunto(s)
Saturno , Carbono , Medio Ambiente Extraterrestre , Hidrógeno , Hielo , Hierro , Espectrometría de Masas , Nitrógeno , Oxígeno , Compuestos de Amonio Cuaternario , Silicio , Nave Espacial
6.
Science ; 304(5678): 1769-74, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15205525

RESUMEN

We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.


Asunto(s)
Meteoroides , Algoritmos , Polvo Cósmico , Modelos Teóricos , Programas Informáticos , Nave Espacial
7.
Science ; 304(5678): 1764-9, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15205524

RESUMEN

Images taken by the Stardust mission during its flyby of 81P/Wild 2 show the comet to be a 5-kilometer oblate body covered with remarkable topographic features, including unusual circular features that appear to be impact craters. The presence of high-angle slopes shows that the surface is cohesive and self-supporting. The comet does not appear to be a rubble pile, and its rounded shape is not directly consistent with the comet being a fragment of a larger body. The surface is active and yet it retains ancient terrain. Wild 2 appears to be in the early stages of its degradation phase as a small volatile-rich body in the inner solar system.


Asunto(s)
Meteoroides , Polvo Cósmico , Gases , Nave Espacial , Agua
8.
Science ; 304(5678): 1776-80, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15205527

RESUMEN

We present measurements of the dust particle flux and mass distribution from the Stardust Dust Flux Monitor Instrument (DFMI) throughout the flyby of comet 81P/Wild 2. In the particle mass regime from 10(-14) to 10(-7) kilograms, the spacecraft encountered regions of intense swarms of particles, together with bursts of activity corresponding to clouds of particles only a few hundred meters across. This fine-scale structure can be explained by particle fragmentation. We estimate that 2800 +/- 500 particles of diameter 15 micrometers or larger impacted the aerogel collectors, the largest being approximately 6 x 10(-7) kilograms, which dominates the total collected mass.


Asunto(s)
Polvo Cósmico , Meteoroides , Gases , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA