Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Eye Res ; 224: 109247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113569

RESUMEN

An array of corneal pathologies collectively called mustard gas keratopathy (MGK) resulting from ocular exposure to sulfur mustard (SM) gas are the most prevalent chemical warfare injury. MGK involves chronic ocular discomfort that results in vision impairment. The etiology of MGK remains unclear and poorly understood primarily due to a lack of scientific data regarding structural and cellular changes in different layers of the cornea altered by mustard vapor exposure in vivo. The goals of this study were to (a) characterize time-dependent changes in different layers of corneal epithelium, stroma, and endothelium in live animals in situ by employing state-of-the-art multimodal clinical ophthalmic imaging techniques and (b) determine if SM-induced acute changes in corneal cells could be rescued by a topical eye drop (TED) treatment using in an established rabbit in vivo model. Forty-five New Zealand White Rabbit eyes were divided into four groups (Naïve, TED, SM, and SM + TED). Only one eye was exposed to SM (200 mg-min/m3 for 8 min), and each group had three time points with six eyes each (Table-1). TED was topically applied twice a day for seven days. Clinical eye examinations and imaging were performed in live rabbits with stereo, Slit-lamp, HRT-RCM3, and Spectralis microscopy system. Fantes grading, fluorescein staining, Schirmer's tests, and applanation tonometry were conducted to measure corneal haze, ocular surface aberrations, tears, and intraocular pressure respectively. H&E and PSR staining were used for histopathological cellular changes in the cornea. In vivo confocal and OCT imaging revealed significant changes in structural and morphological appearance of corneal epithelium, stroma, and endothelium in vivo in SM-exposed rabbit corneas in a time-dependent manner compared to naïve cornea. Also, SM-exposed eyes showed loss of corneal transparency characterized by increased stromal thickness and light-scattering myofibroblasts or activated keratocytes, representing haze formation in the cornea. Neither naive nor TED-alone treated eyes showed any structural, cellular, and functional abnormalities. Topical TED treatment significantly reduced SM-induced abnormalities in primary corneal layers. We conclude that structural and cellular changes in primary corneal layers are early pathological events contributing to MGK in vivo, and efficient targeting of them with suitable agents has the potential to mitigate SM ocular injury.


Asunto(s)
Quemaduras Químicas , Sustancias para la Guerra Química , Enfermedades de la Córnea , Gas Mostaza , Conejos , Animales , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Córnea/patología , Enfermedades de la Córnea/patología , Quemaduras Químicas/patología , Soluciones Oftálmicas/farmacología , Fluoresceínas
2.
Exp Eye Res ; 207: 108610, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33940009

RESUMEN

Our earlier decorin (Dcn) gene overexpression studies found that the targeted Dcn gene transfer into the cornea inhibited corneal angiogenesis in vivo using a rabbit model. In this study, we tested the hypothesis that anti-angiogenic effects of decorin in the cornea are mediated by alterations in a normal physiologic balance of pro- and anti-angiogenic factors using decorin deficient (Dcn-/-) and wild type (Dcn+/+) mice. Corneal neovascularization (CNV) in Dcn-/- and Dcn+/+ mice was produced with a standard chemical injury technique. The clinical progression of CNV in mice was monitored with stereo- and slit-lamp microscopes, and histopathological hematoxylin and eosin (H&E) staining. Protein and mRNA expression of pro- and anti-angiogenic factors in the cornea were evaluated using immunofluorescence and quantitative real-time PCR, respectively. Slit-lamp clinical eye examinations revealed significantly more CNV in Dcn-/- mice than the Dcn+/+ mice post-injury (p < 0.05) and AAV5-Dcn gene therapy significantly reduced CNV in Dcn-/- mice compered to no AAV5-Dcn gene therapy controls (p < 0.001). H&E-stained corneal sections exhibited morphology with several neovessels in injured corneas of the Dcn-/- mice than the Dcn+/+ mice. Immunofluorescence of corneal sections displayed significantly higher expression of α-smooth muscle actin (α-SMA) and endoglin proteins in Dcn-/- mice than Dcn+/+ mice (p < 0.05). Quantitative real-time PCR found significantly increased mRNA levels of pro-angiogenic factors endoglin (2.53-fold; p < 0.05), Vegf (2.47-fold; p < 0.05), and Pecam (2.14-fold; p < 0.05) and anti-angiogenic factor Vegfr2 (1.56-fold; p < 0.05) in the normal cornea of the Dcn-/- mice than the Dcn+/+ mice. Furthermore, neovascularized Dcn-/- mice corneas showed greater increase in mRNA expression of pro-angiogenic factors endoglin (4.58-fold; p < 0.0001), Vegf (4.16-fold; p < 0.0001), and Pdgf (2.15-fold; p < 0.0001) and reduced expression of anti-angiogenic factors Ang2 (0.12-fold; p < 0.05), Timp1 (0.22-fold; p < 0.05), and Vegfr2 (0.67-fold; p > 0.05) compared to neovascularized Dcn+/+ mice corneas. These gene deficience studies carried with transgenic Dcn-/- mice revealed decorin's role in influencing a physiologic balance between pro-and anti-angiogenic factors in the normal and injured cornea. We infer that the functional deletion of Dcn promotes irregular corneal repair and aggravates CNV.


Asunto(s)
Neovascularización de la Córnea/metabolismo , Neovascularización de la Córnea/fisiopatología , Decorina/fisiología , Actinas/metabolismo , Animales , Neovascularización de la Córnea/genética , Endoglina/genética , Endoglina/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA