Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(5): 2870-2878, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29708349

RESUMEN

Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data show electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and in agreement with variable temperature conductivity fits find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.

2.
Nanotechnology ; 29(41): 415202, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30059013

RESUMEN

Zinc oxide (ZnO) nanocrystal films are of interest for new applications in thin film transistors and as transparent conductive oxides. Previous work has concentrated on achieving highly conductive, metallic films. This work focusses on the less explored insulating to semi-insulating regime, which enables obtaining deeper insights into the roles of surface states and defect states trapped at the nanocrystal interfaces. We examine the effects of various post-deposition treatments including controlled dosing with ultraviolet light, filling the voids between nanocrystals with a matrix material deposited by atomic layer deposition, and thermal annealing of the nanocrystal films. Both Mott and Efros-Shklovskii variable range hopping are observed depending on the carrier concentration in the nanocrystals. Using the above post-treatments to transition the films between the two conduction mechanisms enables determining the Fermi level density of states and the electron localization length. To interpret our results, we propose a model based on the assumption of nanocrystals consisting of quasi-neutral cores surrounded by shells depleted by surface OH trap states. The model suggests that the primary source of the increased conductivity in ZnO nanocrystal films based on post-treatments is an increase in the ability to tunnel between nanocrystals due to a reduction of the distance between the quasi-neutral nanocrystal cores.

3.
Nano Lett ; 17(8): 4634-4642, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28704060

RESUMEN

Networks of ligand-free semiconductor nanocrystals (NCs) offer a valuable combination of high carrier mobility and optoelectronic properties tunable via quantum confinement. In principle, maximizing carrier mobility entails crossing the insulator-metal transition (IMT), where carriers become delocalized. A recent theoretical study predicted that this transition occurs at nρ3 ≈ 0.3, where n is the carrier density and ρ is the interparticle contact radius. In this work, we satisfy this criterion in networks of plasma-synthesized ZnO NCs by using intense pulsed light (IPL) annealing to tune n and ρ independently. IPL applied to as-deposited NCs increases ρ by inducing sintering, and IPL applied after the NCs are coated with Al2O3 by atomic layer deposition increases n by removing electron-trapping surface hydroxyls. This procedure does not substantially alter NC size or composition and is potentially applicable to a wide variety of nanomaterials. As we increase nρ3 to at least twice the predicted critical value, we observe conductivity scaling consistent with arrival at the critical region of a continuous quantum phase transition. This allows us to determine the critical behavior of the dielectric constant and electron localization length at the IMT. However, our samples remain on the insulating side of the critical region, which suggests that the critical value of nρ3 may in fact be significantly higher than 0.3.

4.
Nano Lett ; 15(12): 8162-9, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26551232

RESUMEN

Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

5.
Sci Adv ; 5(8): eaaw1462, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31467972

RESUMEN

Many envisioned applications of semiconductor nanocrystals (NCs), such as thermoelectric generators and transparent conductors, require metallic (nonactivated) charge transport across an NC network. Although encouraging signs of metallic or near-metallic transport have been reported, a thorough demonstration of nonzero conductivity, σ, in the 0 K limit has been elusive. Here, we examine the temperature dependence of σ of ZnO NC networks. Attaining both higher σ and lower temperature than in previous studies of ZnO NCs (T as low as 50 mK), we observe a clear transition from the variable-range hopping regime to the metallic regime. The critical point of the transition is distinctly marked by an unusual power law close to σ ∝ T 1/5. We analyze the critical conductivity data within a quantum critical scaling framework and estimate the metal-insulator transition (MIT) criterion in terms of the free electron density, n, and interparticle contact radius, ρ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA