Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 55, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261097

RESUMEN

To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.


Asunto(s)
MicroARNs , Proteínas Ribosómicas , Animales , Humanos , Ratones , Acetilcolinesterasa , MicroARNs/genética , Primates , Proteínas Ribosómicas/genética
2.
J Neurochem ; 164(5): 671-683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354307

RESUMEN

Transfer RNA fragments (tRFs) have recently been shown to be an important family of small regulatory RNAs with diverse functions. Recent reports have revealed modified tRF blood levels in a number of nervous system conditions including epilepsy, ischemic stroke, and neurodegenerative diseases, but little is known about tRF levels in the cerebrospinal fluid (CSF). To address this issue, we studied age, sex, and Parkinson's disease (PD) effects on the distributions of tRFs in the CSF and blood data of healthy controls and PD patients from the NIH and the Parkinson's Progression Markers Initiative (PPMI) small RNA-seq datasets. We discovered that long tRFs are expressed in higher levels in the CSF than in the blood. Furthermore, the CSF showed a pronounced age-associated decline in the level of tRFs cleaved from the 3'-end and anti-codon loop of the parental tRNA (3'-tRFs, i-tRFs), and more pronounced profile differences than the blood profiles between the sexes. In comparison, we observed moderate age-related elevation of blood 3'-tRF levels. In addition, distinct sets of tRFs in the CSF and in the blood segregated PD patients from controls. Finally, we found enrichment of tRFs predicted to target cholinergic mRNAs (Cholino-tRFs) among mitochondrial-originated tRFs, raising the possibility that the neurodegeneration-related mitochondrial impairment in PD patients may lead to deregulation of their cholinergic tone. Our findings demonstrate that the CSF and blood tRF profiles are distinct and that the CSF tRF profiles are modified in a sex-, age-, and disease-related manner, suggesting that they reflect the inter-individual cerebral differences and calling for incorporating this important subset of small RNA regulators into future studies.


Asunto(s)
Enfermedad de Parkinson , Humanos , ARN de Transferencia , Mitocondrias/genética
3.
Proc Natl Acad Sci U S A ; 117(51): 32606-32616, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288717

RESUMEN

Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14+ monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14+ monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a "changing of the guards" between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.


Asunto(s)
Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/inmunología , MicroARNs/inmunología , Sistema Colinérgico no Neuronal/inmunología , ARN de Transferencia/inmunología , Anciano , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/inmunología , Accidente Cerebrovascular Isquémico/fisiopatología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Monocitos/fisiología , Sistema Colinérgico no Neuronal/genética , Estudios Prospectivos , Células RAW 264.7 , ARN de Transferencia/sangre , ARN de Transferencia/genética
4.
Alzheimers Dement ; 19(11): 5159-5172, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37158312

RESUMEN

INTRODUCTION: Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS: We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS: NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION: Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Núcleo Accumbens/metabolismo , Neuronas Colinérgicas/metabolismo , Colinérgicos/metabolismo , ARN/metabolismo , ARN de Transferencia/metabolismo
5.
J Neurochem ; 153(6): 727-758, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31562773

RESUMEN

Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. Cover Image for this issue: doi: 10.1111/jnc.14749.


Asunto(s)
Envejecimiento/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/deficiencia , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Adaptación Fisiológica/fisiología , Envejecimiento/genética , Animales , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes/métodos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Neuronas/metabolismo
6.
FASEB J ; 33(10): 11223-11234, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31311324

RESUMEN

Recent reports attribute numerous regulatory functions to the nuclear paraspeckle-forming long noncoding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in-house and web-available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron-specific formation of NEAT1-based paraspeckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)-induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up-regulation, whereas RNA interference-mediated depletion of NEAT1 exacerbated death of PQ-exposed cells in a leucine-rich repeat kinase 2-mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.-Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.


Asunto(s)
Neuroprotección/fisiología , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , ARN Largo no Codificante/metabolismo , Sustancia Negra/metabolismo , Encéfalo/metabolismo , Línea Celular , Células HEK293 , Humanos , Neuronas/metabolismo , Interferencia de ARN/fisiología
7.
Proc Natl Acad Sci U S A ; 114(25): E4996-E5005, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584127

RESUMEN

Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/metabolismo , MicroARNs/metabolismo , Acetilcolina/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Colinérgicos/farmacología , Epilepsia/tratamiento farmacológico , Humanos , Ratones , Ratones Transgénicos , Pilocarpina/farmacología , Receptores Nicotínicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
8.
Nature ; 498(7452): 65-9, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23708965

RESUMEN

Fusing left and right eye images into a single view is dependent on precise ocular alignment, which relies on coordinated eye movements. During movements of the head this alignment is maintained by numerous reflexes. Although rodents share with other mammals the key components of eye movement control, the coordination of eye movements in freely moving rodents is unknown. Here we show that movements of the two eyes in freely moving rats differ fundamentally from the precisely controlled eye movements used by other mammals to maintain continuous binocular fusion. The observed eye movements serve to keep the visual fields of the two eyes continuously overlapping above the animal during free movement, but not continuously aligned. Overhead visual stimuli presented to rats freely exploring an open arena evoke an immediate shelter-seeking behaviour, but are ineffective when presented beside the arena. We suggest that continuously overlapping visual fields overhead would be of evolutionary benefit for predator detection by minimizing blind spots.


Asunto(s)
Visión Binocular/fisiología , Campos Visuales/fisiología , Animales , Reacción de Fuga/fisiología , Conducta Exploratoria/fisiología , Movimientos Oculares/fisiología , Cabeza/fisiología , Modelos Biológicos , Movimiento/fisiología , Disco Óptico/fisiología , Conducta Predatoria , Ratas , Retina/fisiología
9.
Gut ; 67(6): 1124-1134, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28381526

RESUMEN

OBJECTIVE: Both non-alcoholic fatty liver disease (NAFLD) and the multitarget complexity of microRNA (miR) suppression have recently raised much interest, but the in vivo impact and context-dependence of hepatic miR-target interactions are incompletely understood. Assessing the relative in vivo contributions of specific targets to miR-mediated phenotypes is pivotal for investigating metabolic processes. DESIGN: We quantified fatty liver parameters and the levels of miR-132 and its targets in novel transgenic mice overexpressing miR-132, in liver tissues from patients with NAFLD, and in diverse mouse models of hepatic steatosis. We tested the causal nature of miR-132 excess in these phenotypes by injecting diet-induced obese mice with antisense oligonucleotide suppressors of miR-132 or its target genes, and measured changes in metabolic parameters and transcripts. RESULTS: Transgenic mice overexpressing miR-132 showed a severe fatty liver phenotype and increased body weight, serum low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and liver triglycerides, accompanied by decreases in validated miR-132 targets and increases in lipogenesis and lipid accumulation-related transcripts. Likewise, liver samples from both patients with NAFLD and mouse models of hepatic steatosis or non-alcoholic steatohepatitis (NASH) displayed dramatic increases in miR-132 and varying decreases in miR-132 targets compared with controls. Furthermore, injecting diet-induced obese mice with anti-miR-132 oligonucleotides, but not suppressing its individual targets, reversed the hepatic miR-132 excess and hyperlipidemic phenotype. CONCLUSIONS: Our findings identify miR-132 as a key regulator of hepatic lipid homeostasis, functioning in a context-dependent fashion via suppression of multiple targets and with cumulative synergistic effects. This indicates reduction of miR-132 levels as a possible treatment of hepatic steatosis.


Asunto(s)
Lipogénesis/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Anciano , Animales , Femenino , Humanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Lípidos/sangre , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología
10.
Neurobiol Dis ; 106: 1-13, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28630030

RESUMEN

Alzheimer's disease (AD) involves changes in both lipid and RNA metabolism, but it remained unknown if these differences associate with AD's cognition and/or post-mortem neuropathology indices. Here, we report RNA-sequencing evidence of inter-related associations between lipid processing, cognition level, and AD neuropathology. In two unrelated cohorts, we identified pathway-enriched facilitation of lipid processing and alternative splicing genes, including the neuronal-enriched NOVA1 and hnRNPA1. Specifically, this association emerged in temporal lobe tissue samples from donors where postmortem evidence demonstrated AD neuropathology, but who presented normal cognition proximate to death. The observed changes further associated with modified ATP synthesis and mitochondrial transcripts, indicating metabolic relevance; accordingly, mass-spectrometry-derived lipidomic profiles distinguished between individuals with and without cognitive impairment prior to death. In spite of the limited group sizes, tissues from persons with both cognitive impairment and AD pathology showed elevation in several drug-targeted genes of other brain, vascular and autoimmune disorders, accompanied by pathology-related increases in distinct lipid processing transcripts, and in the RNA metabolism genes hnRNPH2, TARDBP, CLP1 and EWSR1. To further detect 3'-polyadenylation variants, we employed multiple cDNA primer pairs. This identified variants that showed limited differences in scope and length between the tested cohorts, yet enabled superior clustering of demented and non-demented AD brains versus controls compared to total mRNA expression values. Our findings indicate inter-related cognition-associated differences in AD's lipid processing, alternative splicing and 3'-polyadenylation, calling for pursuing the underlying psychological and therapeutics implications.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Metabolismo de los Lípidos/fisiología , ARN/metabolismo , Lóbulo Temporal/metabolismo , Anciano , Anciano de 80 o más Años , Empalme Alternativo , Enfermedad de Alzheimer/patología , Cognición , Disfunción Cognitiva/patología , Estudios de Cohortes , Humanos , Masculino , Análisis de Secuencia de ARN , Lóbulo Temporal/patología
11.
Hum Mol Genet ; 23(17): 4569-80, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24722204

RESUMEN

MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.


Asunto(s)
Ansiedad/genética , Hipertensión/genética , MicroARNs/metabolismo , Acetilcolinesterasa/genética , Alelos , Animales , Secuencia de Bases , Presión Sanguínea , Encéfalo/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Voluntarios Sanos , Heterocigoto , Homocigoto , Humanos , Hidrocortisona/sangre , Hipertensión/sangre , Hipertensión/fisiopatología , Interleucina-6/genética , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Primates/genética , Especificidad de la Especie , Proteína de Unión al GTP cdc42/metabolismo
12.
Mol Metab ; 79: 101856, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141848

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator ß-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Lisina , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Oléico , Perilipina-2
13.
bioRxiv ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36798311

RESUMEN

Introduction: Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in tRNA fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). Methods: We analyzed small RNA-sequencing data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. Results: NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. Discussion: Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.

14.
J Cell Mol Med ; 16(7): 1496-507, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21910823

RESUMEN

Subthalamic deep brain stimulation (DBS) reversibly modulates Parkinson's disease (PD) motor symptoms, providing an unusual opportunity to compare leucocyte transcripts in the same individuals before and after neurosurgery and 1 hr after stimulus cessation (ON- and OFF-stimulus). Here, we report DBS-induced reversibility and OFF-stimulus restoration in 12 of 16 molecular functions and 3 of 4 biological processes shown in exon microarrays to be differentially expressed between PD patients and controls, post-DBS from pre-DBS and OFF from ON states. Intriguingly, 6 of 18 inflammation and immune-related functions exhibited reversibility, and the extent of stimulus-induced changes correlated with the neurological DBS efficacy, suggesting mechanistic implications. A minimal list of 29 transcripts that changed in all three comparisons between states discriminated pre-surgery and OFF states from post-surgery and controls. Six of these transcripts were found to be able to distinguish between PD patients and both healthy controls and patients with other neurological diseases in a previously published whole blood 3' array data study of early PD patients. Our findings support the future use of this approach for identifying targets for therapeutic intervention and assessing the efficacy of current and new treatments in this and other neurological diseases.


Asunto(s)
Células Sanguíneas/metabolismo , Estimulación Encefálica Profunda , Leucocitos/metabolismo , Enfermedad de Parkinson/sangre , Transcriptoma , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
15.
Proc Natl Acad Sci U S A ; 106(46): 19557-62, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19889973

RESUMEN

We describe a miniaturized head-mounted multiphoton microscope and its use for recording Ca(2+) transients from the somata of layer 2/3 neurons in the visual cortex of awake, freely moving rats. Images contained up to 20 neurons and were stable enough to record continuously for >5 min per trial and 20 trials per imaging session, even as the animal was running at velocities of up to 0.6 m/s. Neuronal Ca(2+) transients were readily detected, and responses to various static visual stimuli were observed during free movement on a running track. Neuronal activity was sparse and increased when the animal swept its gaze across a visual stimulus. Neurons showing preferential activation by specific stimuli were observed in freely moving animals. These results demonstrate that the multiphoton fiberscope is suitable for functional imaging in awake and freely moving animals.


Asunto(s)
Calcio/fisiología , Potenciales Evocados Visuales , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Movimiento , Neuronas/citología , Ratas , Ratas Endogámicas , Corteza Visual/citología
16.
Nat Neurosci ; 11(7): 749-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18552841

RESUMEN

It is unclear how the complex spatiotemporal organization of ongoing cortical neuronal activity recorded in anesthetized animals relates to the awake animal. We therefore used two-photon population calcium imaging in awake and subsequently anesthetized rats to follow action potential firing in populations of neurons across brain states, and examined how single neurons contributed to population activity. Firing rates and spike bursting in awake rats were higher, and pair-wise correlations were lower, compared with anesthetized rats. Anesthesia modulated population-wide synchronization and the relationship between firing rate and correlation. Overall, brain activity during wakefulness cannot be inferred using anesthesia.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Corteza Visual/citología , Vigilia/fisiología , Algoritmos , Anestesia , Animales , Animales Recién Nacidos , Calcio/metabolismo , Diagnóstico por Imagen , Ácido Egtácico/análogos & derivados , Electroencefalografía/métodos , Fotones , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Rodaminas , Análisis Espectral , Estadísticas no Paramétricas
17.
Biomed Opt Express ; 13(7): 3983-3992, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35991933

RESUMEN

Laser scanning microscopy requires beam steering through relay and focusing optics at sub-micron precision. In light-weight mobile systems, such as head mounted multiphoton microscopes, distortion and imaging plane curvature management is unpractical due to the complexity of required optic compensation. Thus, the resulting scan pattern limits anatomical fidelity and decreases analysis algorithm efficiency. Here, we present a technique that reconstructs the three-dimensional scan path only requiring translation of a simple fluorescent test probe. Our method is applicable to any type of scanning instrument with sectioning capabilities without prior assumptions regarding origin of imaging deviations. Further, we demonstrate that the obtained scan pattern allows analysis of these errors, and allows to restore anatomical accuracy relevant for complementary methods such as motion correction, further enhancing spatial registration and feature extraction.

18.
Cells ; 11(8)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455956

RESUMEN

Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson's disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression.


Asunto(s)
Dolor Crónico , Fibromialgia , MicroARNs , Acetilcolinesterasa , Células Sanguíneas , Colinérgicos , Femenino , Fibromialgia/genética , Humanos , MicroARNs/genética
19.
J Hum Hypertens ; 36(10): 911-916, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453104

RESUMEN

Recent findings in experimental models have shown that the microRNA miR-132 (mir-132) is an important regulator of liver homeostasis and lipid metabolism. We aimed to assess miR-132 expression in liver and fat tissues of obese individuals and examine its association with blood pressure (BP) and hepatic steatosis. We examined obese individuals undergoing bariatric surgery for weight loss (n = 19). Clinical and demographic information was obtained. Quantitative PCR was performed to determine tissue expression of miR-132 in liver and subcutaneous and visceral fat biopsies obtained during bariatric surgery. Liver biopsies were read by a single liver pathologist and graded for steatosis, inflammation and fibrosis. Participants (aged 39 ± 8.1 years) had a body mass index (BMI) of 42 ± 4.5 kg/m2 and presented with 2.2 ± 1.2 metabolic abnormalities. Supine BP was 127 ± 16/74 ± 11 mmHg. Hepatic and visceral fat expression of miR-132 were correlated (r = 0.59, P = 0.033). There was no correlation between subcutaneous and visceral expression of miR-132 (r = -0.31, P = 0.20). Hepatic and visceral fat miR-132 expression were associated with BMI (r = 0.62 and r = 0.68, P = 0.049 respectively) and degree of liver steatosis (r = 0.60 and r = 0.55, P < 0.05, respectively). Subcutaneous fat miRNA-132 expression was correlated to office systolic BP (r = 0.46, P < 0.05), several aspects of 24 h BP (24 h systolic BP: r = 0.52; day systolic BP: r = 0.59, P < 0.05 for all), plasma triglycerides (r = 0.51, P < 0.01) and liver enzymes (ALT: r = -0.52; AST: r = -0.48, P < 0.05 for all). We found an association between miR-132 and markers of cardiovascular and metabolic disease. Reduction of miR-132 may be a target for the regulation of liver lipid homeostasis and control of obesity-related blood pressure.


Asunto(s)
Hígado Graso , MicroARNs , Presión Sanguínea/genética , Hígado Graso/complicaciones , Hígado Graso/genética , Hígado Graso/metabolismo , Humanos , MicroARNs/genética , Obesidad/complicaciones , Obesidad/genética , Triglicéridos
20.
Neurodegener Dis ; 7(1-3): 60-3, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20173328

RESUMEN

BACKGROUND: In Alzheimer's disease (AD), cholinergic neurons are particularly vulnerable for as yet unclear reasons. Here, we report that modified composition, localization and properties of alternative splice variants encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase (AChE) may be variably involved in disease progression or in systemic efforts to attenuate its progression. OBJECTIVE: The purpose of this study was to explore the implications for AD of the cellular and biochemical properties of the various AChE proteins, differing in their N and C termini. METHODS: We have used cell transfection with genetically engineered vectors as well as microinjection to overexpress specific AChE variants and explore the consequences to cellular well-being and survival. Additionally, we employed highly purified recombinant AChE-R and AChE-S to explore putative interactions with the AD beta-amyloid peptide. RESULTS: Our findings demonstrate distinct, and in certain cases inverse cell fate outcome under enforced expression of the human N- and C-terminally modified AChE variants, all of which have similar enzymatic activities. CONCLUSION: The N-terminal extension in conjunction with the primary helical C-terminal peptide of 'tailed' AChE-S facilitates, whereas the shorter, naturally unfolded C-terminus of the stress-induced AChE-R variant attenuates Alzheimer's pathology.


Asunto(s)
Acetilcolinesterasa/genética , Enfermedad de Alzheimer , Apoptosis/genética , Neuronas/patología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Estudios de Casos y Controles , Células Cultivadas , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/metabolismo , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA