Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 569(7754): 121-125, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019301

RESUMEN

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Regeneración/genética , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Animales , Femenino , Homeostasis , Masculino , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Regeneración/fisiología , Análisis de Secuencia de ARN
2.
Nature ; 526(7575): 715-8, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26503053

RESUMEN

The gut epithelium has remarkable self-renewal capacity that under homeostatic conditions is driven by Wnt signalling in Lgr5(+) intestinal stem cells (ISCs). However, the mechanisms underlying ISC regeneration after injury remain poorly understood. The Hippo signalling pathway mediates tissue growth and is important for regeneration. Here we demonstrate in mice that Yap, a downstream transcriptional effector of Hippo, is critical for recovery of intestinal epithelium after exposure to ionizing radiation. Yap transiently reprograms Lgr5(+) ISCs by suppressing Wnt signalling and excessive Paneth cell differentiation, while promoting cell survival and inducing a regenerative program that includes Egf pathway activation. Accordingly, growth of Yap-deficient organoids is rescued by the Egfr ligand epiregulin, and we find that non-cell-autonomous production of stromal epiregulin may compensate for Yap loss in vivo. Consistent with key roles for regenerative signalling in tumorigenesis, we further demonstrate that Yap inactivation abolishes adenomas in the Apc(Min) mouse model of colon cancer, and that Yap-driven expansion of Apc(-/-) organoids requires the Egfr module of the Yap regenerative program. Finally, we show that in vivo Yap is required for progression of early Apc mutant tumour-initiating cells, suppresses their differentiation into Paneth cells, and induces a regenerative program and Egfr signalling. Our studies reveal that upon tissue injury, Yap reprograms Lgr5(+) ISCs by inhibiting the Wnt homeostatic program, while inducing a regenerative program that includes activation of Egfr signalling. Moreover, our findings reveal a key role for the Yap regenerative pathway in driving cancer initiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Neoplasias del Colon/patología , Intestinos/citología , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regeneración , Células Madre/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adenoma/metabolismo , Adenoma/patología , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Transformación Celular Neoplásica , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Epirregulina/metabolismo , Receptores ErbB/metabolismo , Femenino , Vía de Señalización Hippo , Homeostasis/efectos de la radiación , Mucosa Intestinal/metabolismo , Intestinos/efectos de la radiación , Masculino , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Organoides/metabolismo , Células de Paneth/citología , Células de Paneth/efectos de la radiación , Fosfoproteínas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Regeneración/efectos de la radiación , Células Madre/citología , Células Madre/efectos de la radiación , Vía de Señalización Wnt , Proteínas Señalizadoras YAP
3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208872

RESUMEN

Despite the environmental constraints imposed upon the intestinal epithelium, this tissue must perform essential functions such as nutrient absorption and hormonal regulation, while also acting as a critical barrier to the outside world. These functions depend on a variety of specialized cell types that are constantly renewed by a rapidly proliferating population of intestinal stem cells (ISCs) residing at the base of the crypts of Lieberkühn. The niche components and signals regulating crypt morphogenesis and maintenance of homeostatic ISCs have been intensely studied over the last decades. Increasingly, however, researchers are turning their attention to unraveling the mechanisms driving gut epithelial regeneration due to physical damage or infection. It is now well established that injury to the gut barrier triggers major cell fate changes, demonstrating the highly plastic nature of the gut epithelium. In particular, lineage tracing and transcriptional profiling experiments have uncovered several injury-induced stem-cell populations and molecular markers of the regenerative state. Despite the progress achieved in recent years, several questions remain unresolved, particularly regarding the mechanisms driving dedifferentiation of the gut epithelium. In this review, we summarize the latest studies, primarily from murine models, that define the regenerative processes governing the gut epithelium and discuss areas that will require more in-depth investigation.


Asunto(s)
Redes Reguladoras de Genes , Mucosa Intestinal/fisiología , Regeneración , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Homeostasis , Humanos , Mucosa Intestinal/citología , Nicho de Células Madre
4.
PLoS Genet ; 9(3): e1003380, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555292

RESUMEN

Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proliferación Celular , Riñón , Morfogénesis , Fosfoproteínas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Proteínas de Ciclo Celular , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
5.
Methods Mol Biol ; 2664: 217-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37423993

RESUMEN

Recently developed in situ hybridization (ISH) methods, such as RNAscope™, have greatly expanded the accessibility and usefulness of ISH in biomedical research. Among many other advantages over traditional ISH, these newer methods enable the simultaneous use of multiple probes, including combination with antibody or lectin staining. We herein illustrate the application of RNAscope™ multiplex ISH in the study of the adapter protein Dok-4 in acute kidney injury (AKI). Specifically, we used multiplex ISH to define the expression of Dok-4 and some of its putative binding partners, together with nephron segment markers, as well as markers of proliferation and tubular injury. We also illustrate the use of QuPath image analysis software to perform quantitative analyses of multiplex ISH. Furthermore, we describe how these analyses can exploit the uncoupling of mRNA and protein expression in a knockout (KO) mouse created by CRISPR/CAS9-mediated frame shift to carry out highly focused molecular phenotyping studies at the single-cell level.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Hibridación in Situ , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Nefronas/metabolismo , ARN Mensajero/genética , Coloración y Etiquetado , Riñón/metabolismo , Daño por Reperfusión/metabolismo
6.
Trends Parasitol ; 39(6): 414-422, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37076358

RESUMEN

Intestinal helminths remain highly pervasive throughout the animal kingdom by modulating multiple aspects of the host immune response. The intestinal epithelium functions as a physical barrier as well as a sentinel innate immune tissue with the ability to sense and respond to infectious agents. Although helminths form intimate interactions with the epithelium, comprehensive knowledge about host-helminth interactions at this dynamic interface is lacking. In addition, little is known about the ability of helminths to directly shape the fate of this barrier tissue. Here, we review the diverse pathways by which helminths regulate the epithelium and highlight the emerging field of direct helminth regulation of intestinal stem cell (ISC) fate and function.


Asunto(s)
Helmintiasis , Helmintos , Parasitosis Intestinales , Animales , Mucosa Intestinal , Intestinos/parasitología
7.
Mucosal Immunol ; 16(6): 801-816, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659724

RESUMEN

Cluster of differentiation (CD4+) T cells consist of multiple subtypes, defined by expression of lineage-specific transcription factors, that contribute to the control of infectious diseases by providing help to immune and nonimmune target cells. In the current study, we examined the role of B cell lymphoma (Bcl)-6, a transcriptional repressor and master regulator of T follicular helper cell differentiation, in T cell-mediated host defense against intestinal and systemic parasitic infections. We demonstrate that while Bcl-6 expression by CD4+ T cells is critical for antibody-mediated protective immunity against secondary infection with the nematode Heligmosoides polygyrus bakeri, it paradoxically compromises worm expulsion during primary infection by limiting the generation of interleukin-10 (IL-10)-producing Gata3+ T helper 2 cells. Enhanced worm expulsion in the absence of Bcl-6 expressing T cells was associated with amplified intestinal goblet cell differentiation and increased generation of alternatively activated macrophages, effects that were reversed by neutralization of IL-10 signals. An increase in IL-10 production by Bcl-6-deficient CD4+ T cells was also evident in the context of systemic Leishmania donovani infection, but in contrast to Heligmosoides polygyrus bakeri infection, compromised T helper 1-mediated liver macrophage activation and increased susceptibility to this distinct parasitic challenge. Collectively, our studies suggest that host defense pathways that protect against parasite superinfection and lethal systemic protozoal infections can be engaged at the cost of compromised primary resistance to well-tolerated helminths.


Asunto(s)
Nematodos , Enfermedades Parasitarias , Animales , Interleucina-10 , Células Th2
8.
Nat Cell Biol ; 7(4): 381-6, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15778706

RESUMEN

Wnt signalling, which is transduced through beta-catenin/TCF4, maintains the undifferentiated state of intestinal crypt progenitor cells. Mutational activation of the pathway initiates the adenomacarcinoma sequence. Whereas all other differentiated epithelial cells migrate from the crypt onto the villus, Paneth cells home towards the source of Wnt signals--that is, the crypt bottom. Here, we show that expression of a Paneth gene programme is critically dependent on TCF4 in embryonic intestine. Moreover, conditional deletion of the Wnt receptor Frizzled-5 abrogates expression of these genes in Paneth cells in the adult intestine. Conversely, adenomas in Apc-mutant mice and colorectal cancers in humans inappropriately express these Paneth-cell genes. These observations imply that Wnt signals in the crypt can separately drive a stem-cell/progenitor gene programme and a Paneth-cell maturation programme. In intestinal cancer, both gene programmes are activated simultaneously.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Intestino Delgado/citología , Células de Paneth/fisiología , Transducción de Señal/fisiología , Animales , Cromatina/inmunología , Regulación de la Expresión Génica/fisiología , Humanos , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Intestino Delgado/embriología , Intestino Delgado/ultraestructura , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Células de Paneth/citología , Células de Paneth/ultraestructura , Proteínas Wnt
9.
Front Immunol ; 13: 961457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979350

RESUMEN

Acinar-to-ductal metaplasia (ADM) is a recently recognized, yet less well-studied, precursor lesion of pancreatic ductal adenocarcinoma (PDAC) developed in the setting of chronic pancreatitis. Through digital spatial mRNA profiling, we compared ADM and adjacent PDAC tissues from patient samples to unveil the bridging genes during the malignant transformation of pancreatitis. By comparing the bridging genes with the 7-methylguanosine (m7G)-seq dataset, we screened 19 m7G methylation genes for a subsequent large sample analysis. We constructed the "m7G score" model based on the RNA-seq data for pancreatic cancer in The Cancer Genome Atlas (TCGA) database and The Gene Expression Omnibus (GEO) database. Tumors with a high m7G score were characterized by increased immune cell infiltration, increased genomic instability, higher response rate to combined immune checkpoint inhibitors (ICIs), and overall poor survival. These findings indicate that the m7G score is associated with tumor invasiveness, immune cell infiltration, ICI treatment response, and overall patients' survival. We also identified FN1 and ITGB1 as core genes in the m7Gscore model, which affect immune cell infiltration and genomic instability not only in pancreatic cancer but also in pan-cancer. FN1 and ITGB1 can inhibit immune T cell activition by upregulation of macrophages and neutrophils, thereby leading to immune escape of pancreatic cancer cells and reducing the response rate of ICI treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Inestabilidad Genómica , Humanos , Inmunoterapia , Metaplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Pronóstico , Neoplasias Pancreáticas
10.
J Exp Med ; 219(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35938990

RESUMEN

Enteric helminths form intimate physical connections with the intestinal epithelium, yet their ability to directly alter epithelial stem cell fate has not been resolved. Here we demonstrate that infection of mice with the parasite Heligmosomoides polygyrus bakeri (Hpb) reprograms the intestinal epithelium into a fetal-like state marked by the emergence of Clusterin-expressing revival stem cells (revSCs). Organoid-based studies using parasite-derived excretory-secretory products reveal that Hpb-mediated revSC generation occurs independently of host-derived immune signals and inhibits type 2 cytokine-driven differentiation of secretory epithelial lineages that promote their expulsion. Reciprocally, type 2 cytokine signals limit revSC differentiation and, consequently, Hpb fitness, indicating that helminths compete with their host for control of the intestinal stem cell compartment to promote continuation of their life cycle.


Asunto(s)
Nematospiroides dubius , Infecciones por Strongylida , Animales , Citocinas , Mucosa Intestinal , Intestinos , Ratones , Células Madre
11.
Sci Transl Med ; 14(637): eaaz4028, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35320001

RESUMEN

Fibrosis is a central pathway that drives progression of multiple chronic diseases, yet few safe and effective clinical antifibrotic therapies exist. In most fibrotic disorders, transforming growth factor-ß (TGF-ß)-driven scarring is an important pathologic feature and a key contributor to disease progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two closely related transcription cofactors that are important for coordinating fibrogenesis after organ injury, but how they are activated in response to tissue injury has, so far, remained unclear. Here, we describe NUAK family kinase 1 (NUAK1) as a TGF-ß-inducible profibrotic kinase that is up-regulated in multiple fibrotic organs in mice and humans. Mechanistically, we show that TGF-ß induces a rapid increase in NUAK1 in fibroblasts. NUAK1, in turn, can promote profibrotic YAP and TGF-ß/SMAD signaling, ultimately leading to organ scarring. Moreover, activated YAP and TAZ can induce further NUAK1 expression, creating a profibrotic positive feedback loop that enables persistent fibrosis. Using mouse models of kidney, lung, and liver fibrosis, we demonstrate that this fibrogenic signaling loop can be interrupted via fibroblast-specific loss of NUAK1 expression, leading to marked attenuation of fibrosis. Pharmacologic NUAK1 inhibition also reduced scarring, either when initiated immediately after injury or when initiated after fibrosis was already established. Together, our data suggest that NUAK1 plays a critical, previously unrecognized role in fibrogenesis and represents an attractive target for strategies that aim to slow fibrotic disease progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Quinasas , Proteínas Represoras , Transducción de Señal , Factor de Crecimiento Transformador beta , Proteínas Señalizadoras YAP , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fibroblastos/metabolismo , Fibrosis , Ratones , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Señalizadoras YAP/metabolismo
12.
Commun Biol ; 4(1): 688, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099862

RESUMEN

Persistent acinar to ductal metaplasia (ADM) is a recently recognized precursor of pancreatic ductal adenocarcinoma (PDAC). Here we show that the ADM area of human pancreas tissue adjacent to PDAC expresses significantly higher levels of regenerating protein 3A (REG3A). Exogenous REG3A and its mouse homolog REG3B induce ADM in the 3D culture of primary human and murine acinar cells, respectively. Both Reg3b transgenic mice and REG3B-treated mice with caerulein-induced pancreatitis develop and sustain ADM. Two out of five Reg3b transgenic mice with caerulein-induced pancreatitis show progression from ADM to pancreatic intraepithelial neoplasia (PanIN). Both in vitro and in vivo ADM models demonstrate activation of the RAS-RAF-MEK-ERK signaling pathway. Exostosin-like glycosyltransferase 3 (EXTL3) functions as the receptor for REG3B and mediates the activation of downstream signaling proteins. Our data indicates that REG3A/REG3B promotes persistent ADM through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Targeting REG3A/REG3B, its receptor EXTL3, or other downstream molecules could interrupt the ADM process and prevent early PDAC carcinogenesis.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Metaplasia/metabolismo , Metaplasia/patología , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/análisis , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Proteínas Asociadas a Pancreatitis/análisis , Transducción de Señal , Células Tumorales Cultivadas , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Neoplasias Pancreáticas
13.
Cancer Cell ; 39(8): 1115-1134.e12, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34270926

RESUMEN

Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.


Asunto(s)
Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Factores de Transcripción de Dominio TEA/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética , Proteínas Señalizadoras YAP/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Humanos , Integrinas/metabolismo , Masculino , Ratones Transgénicos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/patología , Proteínas de Unión a Retinoblastoma/genética , Factores de Transcripción de Dominio TEA/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Gastroenterology ; 137(4): 1333-45.e1-3, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19549527

RESUMEN

BACKGROUND & AIMS: Stem cells within the intestinal epithelium generate daughter cells that undergo lineage commitment and maturation through the combined action of the Wnt and Notch signaling cascades. Both pathways, in turn, regulate transcription factor networks that further define differentiation toward either enterocytes or 1 of 3 secretory cell lineages (Paneth, goblet, or enteroendocrine cells). In this study, we investigated the role of the Wnt-responsive, Ets-domain transcription factor Spdef in the differentiation of goblet and Paneth cells. METHODS: The in vivo function of Spdef was examined by disrupting the Spdef gene in mice (Spdef(-/-) mice) and analyzing the intestinal phenotype using a range of histologic techniques and DNA microarray profiling. RESULTS: In accordance with expression data, we found that loss of Spdef severely impaired the maturation of goblet and Paneth cells and, conversely, led to an accumulation of immature secretory progenitors. Spdef appears to positively and negatively regulate a specific subset of goblet and Paneth cell genes, including Cryptdins, Mmp7, Ang4, Kallikreins, and Muc2. CONCLUSIONS: Spdef acts downstream of Math1 to promote terminal differentiation of a secretory progenitor pool into Paneth and goblet cells.


Asunto(s)
Diferenciación Celular , Colon/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/metabolismo , Células de Paneth/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Células Madre/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Linaje de la Célula , Colon/ultraestructura , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genotipo , Células Caliciformes/ultraestructura , Intestino Delgado/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Células de Paneth/ultraestructura , Fenotipo , Proteínas Proto-Oncogénicas c-ets/deficiencia , Proteínas Proto-Oncogénicas c-ets/genética , Células Madre/ultraestructura , Transcripción Genética
15.
Mol Cell Biol ; 26(22): 8418-26, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16954380

RESUMEN

Inhibition of the mutationally activated Wnt cascade in colorectal cancer cell lines induces a rapid G1 arrest and subsequent differentiation. This arrest can be overcome by maintaining expression of a single Tcf4 target gene, the proto-oncogene c-Myc. Since colorectal cancer cells share many molecular characteristics with proliferative crypt progenitors, we have assessed the physiological role of c-Myc in adult crypts by conditional gene deletion. c-Myc-deficient crypts are lost within weeks and replaced by c-Myc-proficient crypts through a fission process of crypts that have escaped gene deletion. Although c-Myc(-/-) crypt cells remain in the cell cycle, they are on average much smaller than wild-type cells, cycle slower, and divide at a smaller cell size. c-Myc appears essential for crypt progenitor cells to provide the necessary biosynthetic capacity to successfully progress through the cell cycle.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Genes myc , Intestinos/patología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción TCF/genética , Proteínas Wnt/genética , Animales , Apoptosis , Recuento de Células , Neoplasias Colorrectales/patología , Epitelio/fisiología , Marcación de Gen , Integrasas/genética , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mitosis , Proteína 2 Similar al Factor de Transcripción 7
16.
Methods Mol Biol ; 1765: 315-331, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29589318

RESUMEN

The development of intestinal organoid technology has greatly accelerated research in the field of colorectal cancer. Contrary to traditional cancer cell lines, organoids are composed of multiple cell types arranged in 3D structures highly reminiscent of their native tissues. Thus, organoids provide a near-physiological and readily accessible model to study tissue morphogenesis, adult stem cell behavior and tumorigenesis. Here, we provide protocols for establishing intestinal organoid cultures from genetically modified mouse lines and describe methods to overexpress and knockout genes of interest using lentiviral-based approaches.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/patología , Organoides/patología , Transducción de Señal , Técnicas de Cultivo de Tejidos/métodos , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Colon/patología , Neoplasias Colorrectales/genética , Técnicas de Inactivación de Genes/instrumentación , Técnicas de Inactivación de Genes/métodos , Vectores Genéticos/genética , Lentivirus/genética , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Recto/patología , Técnicas de Cultivo de Tejidos/instrumentación
17.
Nat Commun ; 9(1): 3510, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158528

RESUMEN

In most solid tumors, the Hippo pathway is inactivated through poorly understood mechanisms that result in the activation of the transcriptional regulators, YAP and TAZ. Here, we identify NUAK2 as a YAP/TAZ activator that directly inhibits LATS-mediated phosphorylation of YAP/TAZ and show that NUAK2 induction by YAP/TAZ and AP-1 is required for robust YAP/TAZ signaling. Pharmacological inhibition or loss of NUAK2 reduces the growth of cultured cancer cells and mammary tumors in mice. Moreover, in human patient samples, we show that NUAK2 expression is elevated in aggressive, high-grade bladder cancer and strongly correlates with a YAP/TAZ gene signature. These findings identify a positive feed forward loop in the Hippo pathway that establishes a key role for NUAK2 in enforcing the tumor-promoting activities of YAP/TAZ. Our results thus introduce a new opportunity for cancer therapeutics by delineating NUAK2 as a potential target for re-engaging the Hippo pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Femenino , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Fosfoproteínas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP
19.
Curr Opin Cell Biol ; 48: 17-25, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28527754

RESUMEN

The Hippo pathway is a unique signalling module that regulates cell-specific transcriptional responses and responds to a wide range of intrinsic and extrinsic cues. Besides its classical role in restricting tissue size during development, Hippo signalling is now recognized to control numerous processes including cell proliferation, survival, cell fate determination, epithelial-to-mesenchymal transitions and cell migration. Because of its highly dynamic nature, the intestinal epithelium has served as an exceptional model to study the complex roles of Hippo signalling. In this review, we shall present an overview of Hippo function in the mammalian intestine and discuss the various mechanisms regulating Hippo signalling and how they contribute to intestinal regeneration and cancer.


Asunto(s)
Mucosa Intestinal/metabolismo , Neoplasias Intestinales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Neoplasias Intestinales/patología , Intestinos/citología , Intestinos/patología , Regeneración , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Mol Cell Oncol ; 3(3): e1143992, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27314094

RESUMEN

The Hippo signaling effector Yes-associated protein (Yap) is known for its potent control of tissue growth. Our recent work now shows that Yap promotes regeneration in the intestine by reprogramming intestinal stem cells and blocking their terminal differentiation. Similarly, in tumor-initiating cells Yap regenerative signaling synergizes with Wnt activation to drive adenoma formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA