Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 523(7562): 597-601, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26147083

RESUMEN

Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance, while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently, stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then, an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium, basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly, this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation, lineage tracing and signalling pathway modulation, we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals, the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus, a parent stem/progenitor cell can serve as a functional daughter cell niche.


Asunto(s)
Nicho de Células Madre/fisiología , Células Madre/citología , Animales , Comunicación Celular , Diferenciación Celular , División Celular , Cilios/metabolismo , Femenino , Proteína Jagged-2 , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Receptor Notch2/metabolismo , Transducción de Señal , Células Madre/metabolismo , Tráquea/citología
2.
EMBO J ; 34(10): 1319-35, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25759216

RESUMEN

Snail family members regulate epithelial-to-mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation-induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.


Asunto(s)
Mucosa Intestinal/metabolismo , Intestinos/citología , Factores de Transcripción/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
3.
Arterioscler Thromb Vasc Biol ; 38(7): 1576-1593, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29853569

RESUMEN

OBJECTIVE: Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. APPROACH AND RESULTS: Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. CONCLUSIONS: We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.


Asunto(s)
Traumatismos de las Arterias Carótidas/metabolismo , Espectrometría de Masas , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Proteómica/métodos , Receptor Notch2/metabolismo , Remodelación Vascular , Anciano , Anciano de 80 o más Años , Animales , Anexina A2/metabolismo , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Plectina/metabolismo , Receptor Notch2/deficiencia , Receptor Notch2/genética , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Genesis ; 54(2): 86-90, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26742650

RESUMEN

The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice.


Asunto(s)
Conducto Arterial/embriología , Músculo Liso Vascular/embriología , Músculo Liso Vascular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Músculo Liso Vascular/citología , Proteínas Serrate-Jagged
5.
Arterioscler Thromb Vasc Biol ; 35(12): 2626-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26471266

RESUMEN

OBJECTIVE: Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4(+/-) in adult vasculature alters BMP signaling. APPROACH AND RESULTS: Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27(KIP1) for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4(+/-) mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4(+/-) mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice. CONCLUSIONS: DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other's pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.


Asunto(s)
Senescencia Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endoteliales/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptor Notch1/metabolismo , Trombospondina 1/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Vasos Coronarios/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Genotipo , Factor 2 de Diferenciación de Crecimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/irrigación sanguínea , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Interferencia de ARN , Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Smad Reguladas por Receptores/genética , Proteínas Smad Reguladas por Receptores/metabolismo , Trombospondina 1/genética , Transfección
6.
Proc Natl Acad Sci U S A ; 109(23): 9041-6, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615412

RESUMEN

Generation of effective immune responses requires expansion of rare antigen-specific CD4(+) T cells. The magnitude of the responding population is ultimately determined by proliferation and survival. Both processes are tightly controlled to limit responses to innocuous antigens. Sustained expansion occurs only when innate immune sensors are activated by microbial stimuli or by adjuvants, which has important implications for vaccination. The molecular identity of the signals controlling sustained T-cell responses is not fully clear. Here, we describe a prominent role for the Notch pathway in this process. Coactivation of Notch allows accumulation of far greater numbers of activated CD4(+) T cells than stimulation via T-cell receptor and classic costimulation alone. Notch does not overtly affect cell cycle entry or progression of CD4(+) T cells. Instead, Notch protects activated CD4(+) T cells against apoptosis after an initial phase of clonal expansion. Notch induces a broad antiapoptotic gene expression program that protects against intrinsic, as well as extrinsic, apoptosis pathways. Both Notch1 and Notch2 receptors and the canonical effector RBPJ (recombination signal binding protein for immunoglobulin kappa J region) are involved in this process. Correspondingly, CD4(+) T-cell responses to immunization with protein antigen are strongly reduced in mice lacking these components of the Notch pathway. Our findings, therefore, show that Notch controls the magnitude of CD4(+) T-cell responses by promoting cellular longevity.


Asunto(s)
Apoptosis/inmunología , Receptores Notch/metabolismo , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Apoptosis/genética , Supervivencia Celular/inmunología , Supervivencia Celular/fisiología , Citometría de Flujo , Hemocianinas , Inmunización , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética
7.
BMC Biol ; 11: 13, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23406467

RESUMEN

BACKGROUND: In the mouse ovary, oocytes initially develop in clusters termed germ-cell nests. Shortly after birth, these germ-cell nests break apart, and the oocytes individually become surrounded by somatic granulosa cells to form primordial follicles. Notch signaling plays essential roles during oogenesis in Drosophila, and recent studies have suggested that Notch signaling also plays an essential role during oogenesis and ovary development in mammals. However, no in vivo loss-of-function studies have been performed to establish whether Notch family receptors have an essential physiological role during normal ovarian development in mutant mice. RESULTS: Female mice with conditional deletion of the Notch2 gene in somatic granulosa cells of the ovary exhibited reduced fertility, accompanied by the formation of multi-oocyte follicles, which became hemorrhagic by 7 weeks of age. Formation of multi-oocyte follicles resulted from defects in breakdown of the primordial germ-cell nests. The ovaries of the Notch2 conditional mutant mice had increased numbers of oocytes, but decreased numbers of primordial follicles. Oocyte numbers in the Notch2 conditional mutants were increased not by excess or extended cellular proliferation, but as a result of decreased oocyte apoptosis. CONCLUSIONS: Our work demonstrates that Notch2-mediated signaling in the somatic-cell lineage of the mouse ovary regulates oocyte apoptosis non-cell autonomously, and is essential for regulating breakdown of germ-cell nests and formation of primordial follicles. This model provides a new resource for studying the developmental and physiological roles of Notch signaling during mammalian reproductive biology.


Asunto(s)
Oocitos/citología , Folículo Ovárico/citología , Ovario/citología , Receptor Notch2/fisiología , Animales , Femenino , Fertilidad/genética , Eliminación de Gen , Ratones , Receptor Notch2/genética
8.
J Biol Chem ; 287(24): 20356-68, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22505716

RESUMEN

Activation of Notch signaling requires intramembranous cleavage by γ-secretase to release the intracellular domain. We previously demonstrated that presenilin and nicastrin, components of the γ-secretase complex, are required for neuronal survival in the adult cerebral cortex. Here we investigate whether Notch1 and/or Notch2 are functional targets of presenilin/γ-secretase in promoting survival of excitatory neurons in the adult cerebral cortex by generating Notch1, Notch2, and Notch1/Notch2 conditional knock-out (cKO) mice. Unexpectedly, we did not detect any neuronal degeneration in the adult cerebral cortex of these Notch cKO mice up to ∼2 years of age, whereas conditional inactivation of presenilin or nicastrin using the same αCaMKII-Cre transgenic mouse caused progressive, striking neuronal loss beginning at 4 months of age. More surprisingly, we failed to detect any reduction of Notch1 and Notch2 mRNAs and proteins in the cerebral cortex of Notch1 and Notch2 cKO mice, respectively, even though Cre-mediated genomic deletion of the floxed Notch1 and Notch2 exons clearly took place in the cerebral cortex of these cKO mice. Furthermore, introduction of Cre recombinase into primary cortical cultures prepared from postnatal floxed Notch1/Notch2 pups, where Notch1 and Notch2 are highly expressed, completely eliminated their expression, indicating that the floxed Notch1 and Notch2 alleles can be efficiently inactivated in the presence of Cre. Together, these results demonstrate that Notch1 and Notch2 are not involved in the age-related neurodegeneration caused by loss of presenilin or γ-secretase and suggest that there is no detectable expression of Notch1 and Notch2 in pyramidal neurons of the adult cerebral cortex.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , ARN Mensajero/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Eliminación de Gen , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , ARN Mensajero/genética , Receptor Notch1/genética , Receptor Notch2/genética
9.
Biochem Biophys Res Commun ; 435(3): 356-60, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23665016

RESUMEN

Two Snail family genes, Snai1 and Snai2, encode E2 box-binding transcriptional repressors that are important for cartilage development during long bone formation in mice. We demonstrated previously that the Snai1 and Snai2 genes function redundantly, and compensate for each other's loss during mouse chondrogenesis in vivo. A prediction from this genetic data is that the SNAI1 and SNAI2 proteins can bind to each other's promoter to regulate gene expression. Here we demonstrate that expression of Snai1 and Snai2 RNA and protein is induced during chondrogenic differentiation of cultured mouse ATDC5 cells. Using chromatin immunoprecipitation assays, we then show that endogenous SNAI1 and SNAI2 proteins bind to a subset of E2 boxes in both their own and each other's promoter in differentiating ATDC5 cells. Together with our previous genetic data, these results support the model that expression of the Snai1 and Snai2 genes is negatively regulated by their protein products occupying each other's promoter during chondrogenesis, and help provide an explanation for the genetic redundancy observed in the mouse loss of function models.


Asunto(s)
Condrogénesis/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Diferenciación Celular/genética , Línea Celular , Condrocitos/citología , Condrocitos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción de la Familia Snail
10.
Development ; 137(24): 4191-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21068062

RESUMEN

The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Conducto Arterioso Permeable/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Animales , Animales Recién Nacidos , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Conducto Arterioso Permeable/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Indometacina/uso terapéutico , Proteína Jagged-1 , Masculino , Ratones , Microscopía Electrónica de Transmisión , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/ultraestructura , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged
11.
Development ; 137(18): 3025-35, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20685737

RESUMEN

The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.


Asunto(s)
Diferenciación Celular , Proteínas de la Membrana/metabolismo , Morfogénesis , Transducción de Señal , Diente/embriología , Diente/metabolismo , Animales , Apoptosis , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína Jagged-2 , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación , Receptores Notch/metabolismo , Diente/citología
12.
Genesis ; 50(4): 366-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21998026

RESUMEN

The Notch-regulated ankyrin repeat protein (Nrarp) is a component of a negative feedback system that attenuates Notch pathway-mediated signaling. In vertebrates, the timing and spacing of formation of the mesodermal somites are controlled by a molecular oscillator termed the segmentation clock. Somites are also patterned along the rostral-caudal axis of the embryo. Here, we demonstrate that Nrarp-deficient embryos and mice exhibit genetic background-dependent defects of the axial skeleton. While progression of the segmentation clock occurred in Nrarp-deficient embryos, they exhibited altered rostrocaudal patterning of the somites. In Nrarp mutant embryos, the posterior somite compartment was expanded. These studies confirm an anticipated, but previously undocumented role for the Nrarp gene in vertebrate somite patterning and provide an example of the strong influence that genetic background plays on the phenotypes exhibited by mutant mice.


Asunto(s)
Repetición de Anquirina/genética , Tipificación del Cuerpo , Proteínas/metabolismo , Somitos/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mesodermo , Ratones , Ratones Noqueados , Mutación , Fenotipo , Proteínas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
13.
Dev Biol ; 359(2): 209-21, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21920357

RESUMEN

Cardiac valves originate from endocardial cushions (EC) formed by endothelial-to-mesenchymal transformation (EMT) during embryogenesis. The zinc-finger transcription factor Snai1 has previously been reported to be important for EMT during organogenesis, yet its role in early valve development has not been directly examined. In this study we show that Snai1 is highly expressed in endothelial, and newly transformed mesenchyme cells during EC development. Mice with targeted snai1 knockdown display hypocellular ECs at E10.5 associated with decreased expression of mesenchyme cell markers and downregulation of the matrix metalloproteinase (mmp) family member, mmp15. Snai1 overexpression studies in atrioventricular canal collagen I gel explants indicate that Snai1 is sufficient to promote mmp15 expression, cell transformation, and mesenchymal cell migration and invasion. However, treatment with the catalytically active form of MMP15 promotes cell motility, and not transformation. Further, we show that Snai1-mediated cell migration requires MMP activity, and caMMP15 treatment rescues attenuated migration defects observed in murine ECs following snai1 knockdown. Together, findings from this study reveal previously unappreciated mechanisms of Snai1 for the direct regulation of MMPs during EC development.


Asunto(s)
Cojinetes Endocárdicos/metabolismo , Endotelio/metabolismo , Metaloproteinasa 15 de la Matriz/metabolismo , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Células COS , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Chlorocebus aethiops , Dipéptidos/farmacología , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/embriología , Endotelio/citología , Endotelio/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Inmunohistoquímica , Masculino , Metaloproteinasa 15 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Inhibidores de Proteasas/farmacología , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail , Factores de Tiempo , Factores de Transcripción/genética
14.
EMBO J ; 27(13): 1886-95, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18528438

RESUMEN

Specific deletion of Notch1 and RBPjkappa in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1-null AGM cells was obtained by culturing them with Jagged1-expressing stromal cells or by lentiviral-mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1-mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse.


Asunto(s)
Aorta/embriología , Proteínas de Unión al Calcio/metabolismo , Hematopoyesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Embrión de Mamíferos/metabolismo , Factor de Transcripción GATA2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Mutación , Proteínas Serrate-Jagged
15.
Blood ; 116(25): 5443-54, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20829372

RESUMEN

The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.


Asunto(s)
Factor de Transcripción Ikaros/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiones Promotoras Genéticas/genética , Receptor Notch1/genética , Activación Transcripcional/fisiología , Animales , Northern Blotting , Western Blotting , Transformación Celular Neoplásica , Cartilla de ADN/química , Cartilla de ADN/genética , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Ratones , Ratones Noqueados , Mutación/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , ARN Mensajero/genética , Receptor Notch3 , Receptores Notch/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia , Tasa de Supervivencia
16.
Cancer Cell ; 6(5): 431-2, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15542425

RESUMEN

While the human NOTCH1 gene initially was cloned as part of a translocation breakpoint in T cell acute lymphoblastic leukemia (T-ALL) tumors, this translocation is present in only a small percentage of T-ALL patients. A recent paper by Weng et al. (2004) demonstrates that novel types of activating mutations in the NOTCH1 gene occur in more than half of all T-ALL cases, implicating NOTCH1 as a major player in the etiology of T-ALL.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia-Linfoma de Células T del Adulto/genética , Receptores de Superficie Celular/genética , Factores de Transcripción/genética , Humanos , Mutación , Receptor Notch1 , Transducción de Señal/genética
17.
Proc Natl Acad Sci U S A ; 106(15): 6315-20, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19325125

RESUMEN

Notch has been linked to beta-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/beta-catenin (down-regulated when blocking Wnt/beta-catenin) that are directly regulated by Notch (repressed by gamma-secretase inhibitors and up-regulated by active Notch1 in the absence of beta-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through beta-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/beta-catenin pathway in tumors implanted s.c. in nude mice. Crossing APC(Min/+) with Jagged1(+/Delta) mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear beta-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by beta-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Alelos , Animales , Proteínas de Unión al Calcio/genética , Línea Celular , Núcleo Celular/metabolismo , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Serrate-Jagged , Factores de Transcripción TCF/metabolismo , Transcripción Genética/genética , beta Catenina/metabolismo
18.
Curr Top Dev Biol ; 148: 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35461561

RESUMEN

For many years, the laboratory mouse has been the favored model organism to study mammalian development, biology and disease. Among its advantages for these studies are its close concordance with human biology, the syntenic relationship between the mouse and other mammalian genomes, the existence of many inbred strains, its short gestation period, its relatively low cost for housing and husbandry, and the wide array of tools for genome modification, mutagenesis, and for cryopreserving embryos, sperm and eggs. The advent of CRISPR genome modification techniques has considerably broadened the landscape of model organisms available for study, including other mammalian species. However, the mouse remains the most popular and utilized system to model human development, biology, and disease processes. In this review, we will briefly summarize the long history of mice as a preferred mammalian genetic and model system, and review current large-scale mutagenesis efforts using genome modification to produce improved models for mammalian development and disease.


Asunto(s)
Genoma , Espermatozoides , Animales , Masculino , Mamíferos/genética , Ratones , Mutagénesis/genética
19.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36166296

RESUMEN

Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of these defects arise from a transient developmental excess of thyroid hormone and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue, we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibited reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background. Dio3-/- mice exhibited severe growth retardation during the neonatal period and cartilage loss. Mice surviving after birth manifested brain and cranial dysmorphisms, severe hydrocephalus, choanal atresia, and cleft palate. These abnormalities were noticeable in C57BL/6J Dio3-/- mice at fetal stages, in addition to a thyrotoxic heart with septal defects and thin ventricular walls. Our findings stress the protecting role of DIO3 during development and support the hypothesis that human congenital abnormalities associated with hyperthyroidism during pregnancy are caused by transient thyrotoxicosis before clinical intervention. Our results also suggest thyroid hormone involvement in the etiology of idiopathic pathologies including cleft palate, choanal atresia, Chiari malformations, Kaschin-Beck disease, and Temple and other cranio-encephalic and heart syndromes.


Asunto(s)
Atresia de las Coanas , Fisura del Paladar , Cardiopatías Congénitas , Hipertiroidismo , Tirotoxicosis , Humanos , Embarazo , Femenino , Animales , Ratones , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Ratones Endogámicos C57BL , Tirotoxicosis/complicaciones , Hormonas Tiroideas , Encéfalo/metabolismo
20.
Dev Dyn ; 239(7): 2110-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20549719

RESUMEN

The formation of mammalian secondary palate requires a series of developmental events such as growth, elevation, and fusion. Despite recent advances in the field of palate development, the process of palate elevation remains poorly understood. The current consensus on palate elevation is that the distal end of the vertical palatal shelf corresponds to the medial edge of the elevated horizontal palatal shelf. We provide evidence suggesting that the prospective medial edge of the vertical palate is located toward the interior side (the side adjacent to the tongue), instead of the distal end, of the vertical palatal shelf and that the horizontal palatal axis is generated through palatal outgrowth from the side of the vertical palatal shelf rather than rotating the pre-existing vertical axis orthogonally. Because palate elevation represents a classic example of embryonic tissue re-orientation, our findings here may also shed light on the process of tissue re-orientation in general.


Asunto(s)
Mesodermo/embriología , Hueso Paladar/embriología , Animales , Mesodermo/citología , Ratones , Hueso Paladar/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA