Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Genet ; 38(8): 910-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845400

RESUMEN

Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/enzimología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Ribonucleasa H/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN/genética , Encefalitis Viral/congénito , Femenino , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Síndrome
2.
Nat Cell Biol ; 8(7): 725-33, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16783362

RESUMEN

Ataxia-telangiectasia mutated and Rad3 related (ATR)-Seckel syndrome and autosomal recessive primary microcephaly (MCPH) syndrome share clinical features. RNA interference (RNAi) of MCPH1 have implicated the protein it encodes as a DNA-damage response protein that regulates the transcription of Chk1 and BRCA1, two genes involved in the response to DNA damage. Here, we report that truncating mutations observed in MCPH-syndrome patients do not impact on Chk1 or BRCA1 expression or early ATR-dependent damage-induced phosphorylation events. However, like ATR-Seckel syndrome cells, MCPH1-mutant cell lines show defective G2-M checkpoint arrest and nuclear fragmentation after DNA damage, and contain supernumerary mitotic centrosomes. MCPH1-mutant and ATR-Seckel cells also show impaired degradation of Cdc25A and fail to inhibit Cdc45 loading onto chromatin after replication arrest. Additionally, microcephalin interacts with Chk1. We conclude that MCPH1 has a function downstream of Chk1 in the ATR-signalling pathway. In contrast with ATR-Seckel syndrome cells, MCPH1-mutant cells have low levels of Tyr 15-phosphorylated Cdk1 (pY15-Cdk1) in S and G2 phases, which correlates with an elevated frequency of G2-like cells displaying premature chromosome condensation (PCC). Thus, MCPH1 also has an ATR-independent role in maintaining inhibitory Cdk1 phosphorylation, which prevents premature entry into mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Microcefalia/metabolismo , Mitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas del Citoesqueleto , Daño del ADN/fisiología , Genes cdc/fisiología , Humanos , Microcefalia/genética , Microcefalia/fisiopatología , Proteínas del Tejido Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
3.
Methods Mol Biol ; 370: 97-108, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17416990

RESUMEN

RNA interference (RNAi) is a specific and efficient method to knock down protein levels using small interfering RNAs (siRNAs), which target mRNA degradation. RNAi can be used in mammalian cell culture systems to target any protein of interest, and several studies have used this method to knock down adhesion proteins. We used siRNAs to knock down the levels of TES, a focal adhesion protein, in HeLa cells. We demonstrated knockdown of both TES mRNA and TES protein. Although total knockdown of TES was not achieved, the observed reduction in TES protein was sufficient to result in a cellular phenotype of reduced actin stress fibers.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Interferencia de ARN , Actinas/metabolismo , Western Blotting , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Células HeLa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Dominio LIM , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fibras de Estrés/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Nat Genet ; 40(2): 232-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18157127

RESUMEN

Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.


Asunto(s)
Antígenos/genética , Daño del ADN , Microcefalia/genética , Mutación , Transducción de Señal/genética , Secuencia de Aminoácidos , Antígenos/química , Antígenos/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Estudios de Casos y Controles , Proteínas de Ciclo Celular/genética , Línea Celular , Cromosomas Humanos Par 22 , Codón , Codón sin Sentido , Consanguinidad , Exones , Mutación del Sistema de Lectura , Genes Recesivos , Ligamiento Genético , Genoma Humano , Homocigoto , Humanos , Escala de Lod , Linfocitos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal/fisiología
5.
J Cell Sci ; 120(Pt 20): 3578-88, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17895363

RESUMEN

Microcephalin (MCPH1) is mutated in primary microcephaly, an autosomal recessive human disorder of reduced brain size. It encodes a protein with three BRCT domains that has established roles in DNA damage signalling and the cell cycle, regulating chromosome condensation. Significant adaptive evolutionary changes in primate MCPH1 sequence suggest that changes in this gene could have contributed to the evolution of the human brain. To understand the developmental role of microcephalin we have studied its function in Drosophila. We report here that Drosophila MCPH1 is cyclically localised during the cell cycle, co-localising with DNA during interphase, but not with mitotic chromosomes. mcph1 mutant flies have a maternal effect lethal phenotype, due to mitotic arrest occurring in early syncytial cell cycles. Mitotic entry is slowed from the very first mitosis in such embryos, with prolonged prophase and metaphase stages; and frequent premature separation as well as detachment of centrosomes. As a consequence, centrosome and nuclear cycles become uncoordinated, resulting in arrested embryonic development. Phenotypic similarities with abnormal spindle (asp) and centrosomin (cnn) mutants (whose human orthologues are also mutated in primary microcephaly), suggest that further studies in the Drosophila embryo may establish a common developmental and cellular pathway underlying the human primary microcephaly phenotype.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Mitosis , Empalme Alternativo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Interfase , Fosforilación
6.
Cell Motil Cytoskeleton ; 60(3): 140-52, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15662727

RESUMEN

TES was originally identified as a candidate tumour suppressor gene and has subsequently been found to encode a novel focal adhesion protein. As well as localising to cell-matrix adhesions, TES localises to cell-cell contacts and to actin stress fibres. TES interacts with a variety of cytoskeletal proteins including zyxin, mena, VASP, talin and actin. There is evidence that TES may function in actin-dependent processes as overexpression of TES results in increased cell spreading and decreased cell motility. Together with TES's interacting partners, these data suggest that TES might be involved in regulation of the actin cytoskeleton. Here, for the first time, we have used RNAi to successfully knockdown TES in HeLa cells and we demonstrate that loss of TES from focal adhesions results in loss of actin stress fibres. Similarly, and as previously reported, RNAi-mediated knockdown of zyxin results in loss of actin stress fibres. TES siRNA treated cells show reduced RhoA activity, suggesting that the Rho GTPase pathway may be involved in the TES RNAi-induced loss of stress fibres. We have also used RNAi to examine the requirement of TES and zyxin for each other's localisation at focal adhesions, and we propose a hierarchy of recruitment, with zyxin being first, followed by VASP and then TES. Cell Motil.


Asunto(s)
Actinas/ultraestructura , Adhesiones Focales/fisiología , Proteínas de Homeodominio/fisiología , Interferencia de ARN , Fibras de Estrés/ultraestructura , Proteínas Supresoras de Tumor/fisiología , Actinas/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Proteínas del Citoesqueleto , Glicoproteínas/biosíntesis , Células HeLa , Proteínas de Homeodominio/biosíntesis , Humanos , Proteínas con Dominio LIM , Proteínas de Microfilamentos , Modelos Biológicos , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/fisiología , Proteínas de Unión al ARN , Proteínas Supresoras de Tumor/biosíntesis , Zixina , Proteína de Unión al GTP rhoA/metabolismo
7.
Cell Motil Cytoskeleton ; 57(3): 133-42, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14743347

RESUMEN

Previously we identified TES as a candidate tumour suppressor gene that is located at human chromosome 7q31.1. More recently, we and others have shown TES to encode a novel LIM domain protein that localises to focal adhesions. Here, we present the cloning and functional analysis of the chicken orthologue of TES, cTES. The TES proteins are highly conserved between chicken and human, showing 89% identity at the amino acid level. We show that the cTES protein localised at focal adhesions, actin stress fibres, and sites of cell-cell contact, and GST-cTES can pull-down zyxin and actin. To investigate a functional role for cTES, we looked at the effect of its overexpression on cell spreading and cell motility. Cells overexpressing cTES showed increased cell spreading on fibronectin, and decreased cell motility, compared to RCAS vector transfected control cells. The data from our studies with cTES support our previous findings with human TES and further implicate TES as a member of a complex of proteins that function together to regulate cell adhesion and additionally demonstrate a role for TES in cell motility.


Asunto(s)
Movimiento Celular/fisiología , Tamaño de la Célula/fisiología , Adhesiones Focales/metabolismo , Genes Supresores de Tumor/fisiología , Proteínas de Homeodominio/genética , Proteínas Supresoras de Tumor/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares , Adhesión Celular , Pollos , Cromosomas Humanos Par 7/genética , Proteínas del Citoesqueleto , Glicoproteínas , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Dominio LIM , Metaloproteínas/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Fibras de Estrés/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Zixina
8.
J Cell Sci ; 116(Pt 5): 897-906, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12571287

RESUMEN

Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Citoesqueleto , Adhesiones Focales/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Supresoras de Tumor , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Genes Supresores de Tumor , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glicoproteínas , Proteínas Fluorescentes Verdes , Células HeLa , Proteínas de Homeodominio/genética , Humanos , Proteínas con Dominio LIM , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Proteínas de Microfilamentos , Microscopía Confocal , Unión Proteica , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Talina/genética , Talina/metabolismo , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos , Zixina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA