RESUMEN
BACKGROUND: We evaluated the pharmacokinetics of tenofovir alafenamide fumarate (TAF) and tenofovir in a subset of African children enrolled in the CHAPAS-4 trial. METHODS: Children aged 3-15 years with human immunodeficiency virus infection failing first-line antiretroviral therapy were randomized to emtricitabine/TAF versus standard-of-care nucleoside reverse transcriptase inhibitor combination, plus dolutegravir, atazanavir/ritonavir, darunavir/ritonavir, or lopinavir/ritonavir. Daily emtricitabine/TAF was dosed according to World Health Organization (WHO)-recommended weight bands: 120/15 mg in children weighing 14 to <25 kg and 200/25 mg in those weighing ≥25 kg. At steady state, 8-9 blood samples were taken to construct pharmacokinetic curves. Geometric mean (GM) area under the concentration-time curve (AUC) and the maximum concentration (Cmax) were calculated for TAF and tenofovir and compared to reference exposures in adults. RESULTS: Pharmacokinetic results from 104 children taking TAF were analyzed. GM (coefficient of variation [CV%]) TAF AUClast when combined with dolutegravir (n = 18), darunavir/ritonavir (n = 34), or lopinavir/ritonavir (n = 20) were 284.5 (79), 232.0 (61), and 210.2 (98) ng*hour/mL, respectively, and were comparable to adult reference values. When combined with atazanavir/ritonavir (n = 32), TAF AUClast increased to 511.4 (68) ng*hour/mL. For each combination, tenofovir GM (CV%) AUCtau and Cmax remained below reference values in adults taking 25 mg TAF with a boosted protease inhibitors. CONCLUSIONS: In children, TAF combined with boosted PIs or dolutegravir and dosed according to WHO-recommended weight bands provides TAF and tenofovir concentrations previously demonstrated to be well tolerated and effective in adults. These data provide the first evidence for use of these combinations in African children. CLINICAL TRIALS REGISTRATION: ISRCTN22964075.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Adulto , Niño , Humanos , Ritonavir/uso terapéutico , Sulfato de Atazanavir/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Lopinavir/uso terapéutico , Darunavir/uso terapéutico , Tenofovir/uso terapéutico , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Antivirales/uso terapéutico , Fumaratos/uso terapéutico , Fármacos Anti-VIH/uso terapéuticoRESUMEN
Prostaglandin (PG) E analogs are used clinically to ripen the cervix and induce labor. However, selective receptor agonists may have potential to improve induction response rates or manage unwanted uterine hypercontractility in conditions such as dysmenorrhea and preterm labor. To characterize their therapeutic value, PGE2 analogs were used to investigate the functional E-type prostanoid (EP) receptor population in isolated human uterus. Responsiveness in mouse tissues was also examined to validate its use as a preclinical model. Uterine samples were obtained from mice at dioestrus (n = 12), term gestation (n = 14), and labor (n = 12) and from the lower uterus of women undergoing hysterectomy (n = 12) or Caesarean section (n = 18). Vehicle and agonist effects were assessed using superfusion and immersion techniques. PGE2 evoked predominant excitatory responses in mouse and relaxation in human tissues. Selective EP4 agonists inhibited tissue activity in both nonpregnant species, while the EP2 mimetic CP533536 also attenuated uterine contractions throughout gestation. The uterotonic effects of the EP3/1 agonist sulprostone were more pronounced than the EP1 agonist ONO-D1-004, corresponding to abundant EP3 receptor expression in all samples. The contractile phenotype in mouse compared with human uteri may relate to regional differences as well as high expression of EP3 receptor transcripts. Similarities in nonpregnant and gestational tissues across species suggest that EP3 may represent a valuable translational drug target for preventing uterine hypercontractility by employing a selective antagonist. SIGNIFICANCE STATEMENT: This research validates the use of nonpregnant mice for preclinical drug discovery of uterine EP receptor targets. To determine the utility of novel drugs and delivery systems at term pregnancy and labor, pharmacological agents interacting with EP3 receptors have clear translational value.