Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628279

RESUMEN

A large amount of evidence from radiobiology studies carried out in Deep Underground Laboratories support the view that environmental radiation may trigger biological mechanisms that enable both simple and complex organisms to cope with genotoxic stress. In line with this, here we show that the reduced radiation background of the LNGS underground laboratory renders Drosophila neuroblasts more sensitive to ionizing radiation-induced (but not to spontaneous) DNA breaks compared to fruit flies kept at the external reference laboratory. Interestingly, we demonstrate that the ionizing radiation sensitivity of flies kept at the LNGS underground laboratory is rescued by increasing the underground gamma dose rate to levels comparable to the low-LET reference one. This finding provides the first direct evidence that the modulation of the DNA damage response in a complex multicellular organism is indeed dependent on the environmental dose rate.


Asunto(s)
Drosophila , Laboratorios , Animales , Radiación de Fondo , Daño del ADN , Larva
2.
Semin Cancer Biol ; 63: 49-59, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31102666

RESUMEN

Cancer has long been regarded and treated as a foreign body appearing by mistake inside a living organism. However, now we know that cancer cells communicate with neighbours, thereby creating modified environments able to support their unusual need for nutrients and space. Understanding the molecular basis of these bi-directional interactions is thus mandatory to approach the complex nature of cancer. Since their discovery, MYC proteins have been showing to regulate a steadily increasing number of processes impacting cell fitness, and are consistently found upregulated in almost all human tumours. Of interest, MYC takes part in cell competition, an evolutionarily conserved fitness comparison strategy aimed at detecting weakened cells, which are then committed to death, removed from the tissue and replaced by fitter neighbours. During physiological development, MYC-mediated cell competition is engaged to eliminate cells with suboptimal MYC levels, so as to guarantee selective growth of the fittest and proper homeostasis, while transformed cells expressing high levels of MYC coopt cell competition to subvert tissue constraints, ultimately disrupting homeostasis. Therefore, the interplay between cells with different MYC levels may result in opposite functional outcomes, depending on the nature of the players. In the present review, we describe the most recent findings on the role of MYC-mediated cell competition in different contexts, with a special emphasis on its impact on cancer initiation and progression. We also discuss the relevance of competition-associated cell death to cancer disease.


Asunto(s)
Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Comunicación Celular/fisiología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/etiología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
3.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669839

RESUMEN

Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aß42-amyloid self-aggregation, and their cellular neuroprotective effect against Aß42-induced neurotoxicity. The fact that 6 effectively reduced Aß-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aß42-expressing Drosophila and to improve fly locomotor performance.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cromolin Sódico/uso terapéutico , Ibuprofeno/uso terapéutico , Polifarmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromolin Sódico/síntesis química , Cromolin Sódico/química , Cromolin Sódico/farmacología , Drosophila/efectos de los fármacos , Diseño de Fármacos , Endocitosis/efectos de los fármacos , Ibuprofeno/síntesis química , Ibuprofeno/química , Ibuprofeno/farmacología , Inmunomodulación/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Agregado de Proteínas/efectos de los fármacos , Ratas Wistar
4.
Mol Biol Rep ; 47(10): 8235-8241, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32886326

RESUMEN

Pancreatic adenocarcinoma (PDAC) is the most frequent histological type of malignancy in the pancreas. Extracellular matrix (ECM), plays a critical role during the process of human carcinogenesis and the possible diversity in matricellular proteins composition of ECM may have a significant impact on the clinical course of PDAC. Aim of this paper was to evaluate the expression of three matricellular proteins, including Periostin (POSTN), Tenascin (TNS) and Osteopontin (OPN), in PDAC from long-survival (LS) and non-long survival (NLS) patients. A total of 30 PDAC were analyzed, 15 from patients that survived more than 60 months after surgery (LS) and 15 that died from the disease within 24 (NLS). RNA was extracted and OPN, TNS and POSTN mRNA levels were evaluated by qRT-PCR. LS and NLS samples showed the same type of POSTN and TN isoforms. On the contrary, OPN seems to be preferentially expressed in NLS PDAC. Moreover, OPNb and OPNc isoforms were expressed exclusively in NLS samples. In conclusion, Our data led to hypothesize a possible relationship between the expression of different isoforms of each of these proteins and the clinical outcome of patients with PDAC.


Asunto(s)
Adenocarcinoma , Moléculas de Adhesión Celular/biosíntesis , Proteínas de Neoplasias/biosíntesis , Osteopontina/biosíntesis , Neoplasias Pancreáticas , Tenascina/biosíntesis , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/cirugía , Adulto , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/cirugía , Proyectos Piloto , Isoformas de Proteínas/biosíntesis , Tasa de Supervivencia
5.
EMBO J ; 34(10): 1349-70, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25796446

RESUMEN

Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.


Asunto(s)
Bacterias Aerobias/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Drosophila , Glucólisis/genética , Glucólisis/fisiología , Humanos , Inmunoprecipitación , Fosfoproteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Señalizadoras YAP
6.
Pancreatology ; 18(1): 122-132, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29137857

RESUMEN

Extracellular matrix (ECM) plays a fundamental role in tissue architecture and homeostasis and modulates cell functions through a complex interaction between cell surface receptors, hormones, several bioeffector molecules, and structural proteins like collagen. These components are secreted into ECM and all together contribute to regulate several cellular activities including differentiation, apoptosis, proliferation, and migration. The so-called "matricellular" proteins (MPs) have recently emerged as important regulators of ECM functions. The aim of our review is to consider all different types of MPs family assessing the potential relationship between MPs and survival in patients with pancreatic ductal adenocarcinoma (PDAC). A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement issued in 2009 was conducted through Ovid interface, and literature review was performed in May 2017. The search text words were identified by means of controlled vocabulary, such as the National Library of Medicine's MESH (Medical Subject Headings) and Keywords. Collected data showed an important role of MPs in carcinogenesis and in PDAC prognosis even though the underlying mechanisms are still largely unknown and data are not univocal. Therefore, a better understanding of MPs role in regulation of ECM homeostasis and remodeling of specific organ niches may suggest potential novel extracellular targets for the development of efficacious therapeutic strategies.


Asunto(s)
Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Análisis de Supervivencia
7.
J Neurooncol ; 135(2): 245-254, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28748342

RESUMEN

According to the 2016 World Health Organization (WHO) classification of tumors of the central nervous system, assessment of exon 4 mutations in isocitrate dehydrogenase 1 or 2 genes (IDH1 or IDH2) is an essential step in the characterization of gliomas. The p.R132H mutation is the most frequent alteration in IDH genes, however other non-canonical IDH mutations can be identified. The aim of this study is to investigate in depth the prevalence of non-R132H IDH ("non-canonical") mutations in brain tumors classified according to the 2016 WHO scheme and their clonal distribution in neoplastic cells. A total of 288 consecutive cases of brain gliomas (grade II-IV) were analyzed for exon 4 IDH1 and IDH2 mutations. IDH1 and IDH2 analysis was performed using next generation sequencing. Non-canonical IDH mutations were identified in 13/52 (25.0%) grade II gliomas (astrocytomas: 8/31, 25.8%; oligodendrogliomas: 5/21, 23.8%) and in 5/40 (12.5%) grade III gliomas (astrocytomas: 3/25, 12.0%; oligodendrogliomas: 2/15, 13.3%). They were not identified in 196 grade IV gliomas (192 glioblastomas, 4 gliosarcomas). In the large majority (>80%) of tumors IDH mutations, both IDH1-R132H and the non-canonical ones, were present in the large majority (>80%) of neoplastic cells. Our data highlight the importance of investigating not only the IDH1-R132H mutation but also the non-canonical ones. These mutations are clonally distributed, with proportions of mutated neoplastic cells overlapping with those of p.R132H, a finding consistent with their driver role in gliomagenesis.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Estudios de Cohortes , Exones , Femenino , Glioma/clasificación , Glioma/epidemiología , Glioma/patología , Humanos , Italia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Prevalencia , Organización Mundial de la Salud , Adulto Joven
8.
Dig Endosc ; 29(6): 657-666, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28190274

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer-associated death in the next decade or so. It is widely accepted that tumorigenesis is linked to specific alterations in key genes and pancreatic neoplasms are some of the best characterized at the genomic level. Recent whole-exome and whole-genome sequencing analyses confirmed that PDAC is frequently characterized by mutations in a set of four genes among others: KRAS, TP53, CDKN2A/p16, and SMAD4. Sequencing, for example, is the preferable technique available for detecting KRAS mutations, whereas in situ immunochemistry is the main approach for detecting TP53 gene alteration. Nevertheless, the diagnosis of PDAC is still a clinical challenge, involving adequate acquisition of endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) and specific pathological assessment from tissue architecture to specific biomolecular tests. The aim of the present review is to provide a complete overview of the current knowledge of the biology of pancreatic cancer as detected by the latest biomolecular techniques and, moreover, to propose a paradigm for strict teamwork collaboration in order to improve the correct use of diagnostic sources.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos , Endosonografía/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Técnicas de Diagnóstico Molecular , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Neoplasias Pancreáticas/diagnóstico por imagen , Grupo de Atención al Paciente/organización & administración , Sensibilidad y Especificidad , Proteína Smad4/genética
9.
Biochim Biophys Acta ; 1849(5): 570-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25010747

RESUMEN

The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proliferación Celular , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo
11.
Dev Biol ; 379(1): 64-75, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23608455

RESUMEN

Drosophila dMyc (dMyc) is known for its role in cell-autonomous regulation of growth. Here we address its role in the fat body (FB), a metabolic tissue that functions as a sensor of circulating nutrients to control the release of Drosophila Insulin-like peptides (Dilps) from the brain influencing growth and development. Our results show that expression of dMyc in the FB affects development and animal size. Expression of dMyc, but not of CycD/cdk4 or Rheb, in the FB diminishes the ability to retain Drosophila Insulin-like peptide-2 (DILP2) in the brain during starvation, suggesting that expression of dMyc mimics the signal that remotely controls the release of Dilps into the hemolymph. dMyc also affects glucose metabolism and increases the transcription of Glucose-transporter-1 mRNA, and of Hexokinase and Pyruvate-Kinase mRNAs, key regulators of glycolysis. These animals are able to counteract the increased levels of circulating trehalose induced by a high sugar diet leading to the conclusion that dMyc activity in the FB promotes glucose disposal. dMyc expression induces cell autonomous accumulation of triglycerides, which correlates with increased levels of Fatty Acid Synthase and Acetyl CoA Carboxylase mRNAs, enzymes responsible for lipid synthesis. We also found the expression of Stearoyl-CoA desaturase, Desat1 mRNA significantly higher in FB overexpressing dMyc. Desat1 is an enzyme that is necessary for monosaturation and production of fatty acids, and its reduction affects dMyc's ability to induce fat storage and resistance to animal survival. In conclusion, here we present novel evidences for dMyc function in the Drosophila FB in controlling systemic growth. We discovered that dMyc expression triggers cell autonomous mechanisms that control glucose and lipid metabolism to favor the storage of nutrients (lipids and sugars). In addition, the regulation of Desat1 controls the synthesis of triglycerides in FB and this may affect the humoral signal that controls DILP2 release in the brain.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Ácido Graso Desaturasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Tamaño Corporal , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/enzimología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/citología , Cuerpo Adiposo/enzimología , Ácido Graso Desaturasas/genética , Femenino , Privación de Alimentos , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Hemolinfa/metabolismo , Insulina/metabolismo , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Metabolismo de los Lípidos , Neuropéptidos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Factores de Tiempo , Factores de Transcripción/genética , Trehalosa/metabolismo , Triglicéridos/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
12.
PLoS Genet ; 6(9): e1001140, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20885789

RESUMEN

Genetic analyses in Drosophila epithelia have suggested that the phenomenon of "cell competition" could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki). Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Proliferación Celular , Células Clonales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto/genética , Datos de Secuencia Molecular , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba/genética , Proteínas Señalizadoras YAP
13.
Commun Biol ; 6(1): 431, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076591

RESUMEN

Gaucher Disease (GD), the most common lysosomal disorder, arises from mutations in the GBA1 gene and is characterized by a wide spectrum of phenotypes, ranging from mild hematological and visceral involvement to severe neurological disease. Neuronopathic patients display dramatic neuronal loss and increased neuroinflammation, whose molecular basis are still unclear. Using a combination of Drosophila dGBA1b loss-of-function models and GD patient-derived iPSCs differentiated towards neuronal precursors and mature neurons we showed that different GD- tissues and neuronal cells display an impairment of growth mechanisms with an increased cell death and reduced proliferation. These phenotypes are coupled with the downregulation of several Hippo transcriptional targets, mainly involved in cells and tissue growth, and YAP exclusion from nuclei. Interestingly, Hippo knock-down in the GBA-KO flies rescues the proliferative defect, suggesting that targeting the Hippo pathway can be a promising therapeutic approach to neuronopathic GD.


Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/terapia , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Vía de Señalización Hippo , Neuronas/metabolismo , Proliferación Celular
14.
BMC Biol ; 9: 65, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21951762

RESUMEN

BACKGROUND: Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. RESULTS: Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3ß ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3ß activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. CONCLUSIONS: Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3ß to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
15.
Front Cell Dev Biol ; 10: 1043630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704198

RESUMEN

Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.

16.
ACS Chem Neurosci ; 13(23): 3314-3329, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36445009

RESUMEN

Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-ß (Aß) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aß clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aß and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aß42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 µM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aß42 expressing flies and generating a better outcome than doxycycline (50 µM). Moreover, 22 proved to be able to decrease Aß42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aß/Tau aggregation inhibition in AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Drosophila , Proteínas tau , Drosophila melanogaster
17.
BMC Biol ; 8: 33, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20374622

RESUMEN

BACKGROUND: Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. Precancerous cells are often removed by cell death from normal tissues in the early steps of the tumourigenic process, but the molecules responsible for such a fundamental safeguard process remain in part elusive. With the aim to investigate the molecular crosstalk occurring between precancerous and normal cells in vivo, we took advantage of the clonal analysis methods that are available in Drosophila for studying the phenotypes due to lethal giant larvae (lgl) neoplastic mutation induced in different backgrounds and tissues. RESULTS: We observed that lgl mutant cells growing in wild-type imaginal wing discs show poor viability and are eliminated by Jun N-terminal Kinase (JNK)-dependent cell death. Furthermore, they express very low levels of dMyc oncoprotein compared with those found in the surrounding normal tissue. Evidence that this is a cause of lgl mutant cells elimination was obtained by increasing dMyc levels in lgl mutant clones: their overgrowth potential was indeed re-established, with mutant cells overwhelming the neighbouring tissue and forming tumourous masses displaying several cancer hallmarks. Moreover, when lgl mutant clones were induced in backgrounds of slow-dividing cells, they upregulated dMyc, lost apical-basal cell polarity and were able to overgrow. Those phenotypes were abolished by reducing dMyc levels in the mutant clones, thereby confirming its key role in lgl-induced tumourigenesis. Furthermore, we show that the eiger-dependent Intrinsic Tumour Suppressor pathway plays only a minor role in eliminating lgl mutant cells in the wing pouch; lgl-/- clonal death in this region is instead driven mainly by dMyc-induced Cell Competition. CONCLUSIONS: Our results provide the first evidence that dMyc oncoprotein is required in lgl tumour suppressor mutant tissue to promote invasive overgrowth in larval and adult epithelial tissues. Moreover, we show that dMyc abundance inside versus outside the mutant clones plays a key role in driving neoplastic overgrowth.


Asunto(s)
Muerte Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fenotipo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Mutación/genética
18.
Cells ; 9(1)2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941072

RESUMEN

Glutamine Synthetase 1 (GS1) is a key enzyme that catalyzes the ATP-dependent synthesis of l-glutamine from l-glutamate and is also member of the Glutamate Glutamine Cycle, a complex physiological process between glia and neurons that controls glutamate homeostasis and is often found compromised in neurodegenerative diseases including Huntington's disease (HD). Here we report that the expression of GS1 in neurons ameliorates the motility defects induced by the expression of the mutant Htt, using a Drosophila model for HD. This phenotype is associated with the ability of GS1 to favor the autophagy that we associate with the presence of reduced Htt toxic protein aggregates in neurons expressing mutant Htt. Expression of GS1 prevents the TOR activation and phosphorylation of S6K, a mechanism that we associate with the reduced levels of essential amino acids, particularly of arginine and asparagine important for TOR activation. This study reveals a novel function for GS1 to ameliorate neuronal survival by changing amino acids' levels that induce a "starvation-like" condition responsible to induce autophagy. The identification of novel targets that inhibit TOR in neurons is of particular interest for the beneficial role that autophagy has in preserving physiological neuronal health and in the mechanisms that eliminate the formation of toxic aggregates in proteinopathies.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lisosomas/metabolismo , Neuronas/metabolismo , Animales , Drosophila melanogaster , Glutamato-Amoníaco Ligasa/genética , Enfermedad de Huntington/genética , Mutación , Neuronas/patología
19.
20.
Front Genet ; 10: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881374

RESUMEN

Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA