Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Environ Manage ; 344: 118711, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572402

RESUMEN

Emission standards in European Union, designed to reduce the environmental impact of power generation, present a significant challenge for fast-response distributed power generation systems based on internal combustion engines. Regulated emissions, such as NOx and particulate matter present a major concern due to their adverse number of environmental and health effects. Simultaneously, European Union strives towards sustainable management of plastic waste and seeks the ways for its upcycling and production of new fuels and chemicals. As an answer to the presented challenges, the present experimental study addresses the potential for use of chemically stabilized Waste Plastics Oil (WPO), a product of pyrolysis process of waste plastics in a Reactivity Controlled Compression Ignition (RCCI) combustion concept. To establish a reactivity-controlled combustion, the study uses a combination of methane (a model fuel for biomethane) and WPO to a) simultaneously reduce NOx and particulate matter emissions due to low local combustion temperatures and a high degree of charge homogenization and b) address waste and carbon footprint reduction challenges. Through experiments, influence of direct injection timing and energy shares of utilized fuels to in-cylinder thermodynamic parameters and engine emission response were evaluated in engine operating points at constant indicated mean effective pressure. Acquired results were deeply investigated and benchmarked against compression ignition (CI) and RCCI operation with conventional diesel fuel to determine potential for WPO utilization in an advanced low-temperature combustion concept. Results show that chemically stabilized WPO can be efficiently utilized in RCCI combustion concept without adaptation of injection parameters and that with suitable control parameters, ultra-low emissions of NOx and PM can be achieved with utilized fuels. For diesel/methane mix, NOx and PM emissions were reduced compared to conventional CI operation for 82.0% and 93.2%, respectively, whereas for WPO/methane mix, NOx and PM emissions were reduced for 88.7% and 97.6%, respectively, which can be ascribed to favourable chemical characteristics of WPO for the utilized combustion concept. In the least favourable operating point among those studied, indicated mean effective pressure covariance was kept below 2.5%, which is well below 5% being considered the limit for stable engine operation.


Asunto(s)
Pirólisis , Emisiones de Vehículos , Emisiones de Vehículos/análisis , Plásticos , Gasolina/análisis , Material Particulado/análisis , Frío , Metano , Biocombustibles/análisis
2.
Chimia (Aarau) ; 77(12): 816-826, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131404

RESUMEN

The article discusses the production of platform chemicals from various biological sources, including glycerol, lignin, cellulose, bio-oils, and sea products. It presents the results of catalytic and downstream processes involved in the conversion of these biomass-derived feedstocks. The experimental approaches are complemented by numerical descriptions, ranging from density functional theory (DFT) calculations to kinetic modellingof the experimental data. This multi-scale modelling approach helps to understand the underlying mechanisms and optimize the production of platform chemicals from renewable resources.

3.
Angew Chem Int Ed Engl ; 62(31): e202305804, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37226934

RESUMEN

Ethylene epoxidation is industrially and commercially one of the most important selective oxidations. Silver catalysts have been state-of-the-art for decades, their efficiency steadily improving with empirical discoveries of dopants and co-catalysts. Herein, we perform a computational screening of the metals in the periodic table, identify prospective superior catalysts and experimentally demonstrate that Ag/CuPb, Ag/CuCd and Ag/CuTl outperform the pure-Ag catalysts, while they still confer an easily scalable synthesis protocol. Furthermore, we show that to harness the potential of computationally-led discovery of catalysts fully, it is essential to include the relevant in situ conditions e.g., surface oxidation, parasitic side reactions and ethylene epoxide decomposition, as neglecting such effects leads to erroneous predictions. We combine ab initio calculations, scaling relations, and rigorous reactor microkinetic modelling, which goes beyond conventional simplified steady-state or rate-determining modelling on immutable catalyst surfaces. The modelling insights have enabled us to both synthesise novel catalysts and theoretically understand experimental findings, thus, bridging the gap between first-principles simulations and industrial applications. We show that the computational catalyst design can be easily extended to include larger reaction networks and other effects, such as surface oxidations. The feasibility was confirmed by experimental agreement.

4.
Angew Chem Int Ed Engl ; 60(3): 1244-1253, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32985782

RESUMEN

As one of the most demanded dicarboxylic acids, adipic acid can be directly produced from renewable sources. Hexoses from (hemi)cellulose are oxidized to aldaric acids and subsequently catalytically dehydroxylated. Hitherto performed homogeneously, we present the first heterogeneous catalytic process for converting an aldaric acid into muconic and adipic acid. The contribution of leached Re from the solid pre-reduced catalyst was also investigated with hot-filtration test and found to be inactive for dehydroxylation. Corrosive or hazardous (HBr/H2 ) reagents are avoided and simple alcohols and solid Re/C catalysts in an inert atmosphere are used. At 120 °C, the carboxylic groups are protected by esterification, which prevents lactonization in the absence of water or acidic sites. Dehydroxylation and partial hydrogenation yield monohexenoates (93 %). For complete hydrogenation to adipate, a 16 % higher activation barrier necessitates higher temperatures.

5.
Environ Sci Technol ; 52(23): 13756-13765, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30388370

RESUMEN

Many ambiguities surround the possible mechanisms of colored and toxic nitrophenols formation in natural systems. Nitration of a biologically and environmentally relevant aromatic compound, guaiacol (2-methoxyphenol), under mild aqueous-phase conditions (ambient temperatures, pH 4.5) was investigated by a temperature-dependent experimental modeling coupled to extensive ab initio calculations to obtain the activation energies of the modeled reaction pathways. The importance of dark nonradical reactions is emphasized, involving nitrous (HNO2) and peroxynitrous (HOONO) acids. Oxidation by HOONO is shown to proceed via a nonradical pathway, possibly involving the nitronium ion (NO2+) formation. Using quantum chemical calculations at the MP2/6-31++g(d,p) level, NO2• is shown capable of abstracting a hydrogen atom from the phenolic group on the aromatic ring. In a protic solvent, the corresponding aryl radical can combine with HNO2 to yield OH• and, after a subsequent oxidation step, nitrated aromatic products. The demonstrated chemistry is especially important for understanding the aging of nighttime atmospheric deliquesced aerosol. The relevance should be further investigated in the atmospheric gaseous phase. The results of this study have direct implications for accurate modeling of the burden of toxic nitroaromatic pollutants, and the formation of atmospheric brown carbon and its associated influence on Earth's albedo and climate forcing.


Asunto(s)
Nitritos , Ácido Nitroso , Aerosoles , Nitratos , Oxidación-Reducción
6.
Environ Sci Technol ; 49(15): 9150-8, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26162010

RESUMEN

The tropospheric aqueous-phase aging of guaiacol (2-methoxyphenol, GUA), a lignocellulosic biomass burning pollutant, is addressed in this work. Pathways of GUA nitration in aqueous solution under atmospherically relevant conditions are proposed and critically discussed. The influence of NaNO2 and H2O2, hydroxyl radical scavenger, and sunlight was assessed by an experimental-modeling approach. In the presence of the urban pollutant, nitrite, GUA is preferentially nitrated to yield 4- and 6-nitroguaiacol. After a short lag-time, 4,6-dinitroguaiacol is also formed. Its production accelerates after guaiacol is completely consumed, which is nicely described by the model function accounting for NO2(•) and NO2(+) as nitrating agents. Although the estimated second-order kinetic rate constants of methoxyphenol nitration with NO2(•) are substantially higher than the corresponding rate constants of nitration with NO2(+), nitration rates are competitive under nighttime and liquid atmospheric aerosol-like conditions. In contrast to concentrations of radicals, which are governed by the interplay between diffusion-controlled reactions and are therefore mostly constant, concentrations of electrophiles are very much dependent on the ratio of NO2(-) to activated aromatics in solution. These results contribute substantially to the understanding of methoxyphenol aging in the atmospheric waters and underscore the importance of including electrophilic aromatic substitution reactions in atmospheric models.


Asunto(s)
Atmósfera/química , Guayacol/química , Nitritos/análisis , Agua/química , Ambiente , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Iones , Cinética , Modelos Teóricos , Nitrosación , Soluciones , Luz Solar
7.
ChemSusChem ; : e202400962, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959341

RESUMEN

Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150 - 160 kJmol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115 - 125 kJmol-1).

8.
Sci Total Environ ; 838(Pt 2): 156092, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35605869

RESUMEN

Plastic waste is steadily polluting oceans and environments. Even if collected, most waste is still predominantly incinerated for energy recovery at the cost of CO2. Chemical recycling can contribute to the transition towards a circular economy with pyrolysis combined with steam cracking being the favored recycling option for the time being. However, today, the high variety and contamination of real waste remains the biggest challenge. This is especially relevant for waste fractions which are difficult or even impossible to recycle mechanically such as highly mixed municipal plastic waste or marine litter. In this work, we studied the detailed composition and the steam cracking performance of distilled pyrolysis oil fractions in the naphtha-range of two highly relevant waste fractions: mixed municipal plastic waste (MPW) considered unsuitable for mechanical recycling and marine litter (ML) collected from the sea bottom. Advanced analytical techniques including comprehensive two-dimensional gas chromatography (GC × GC) coupled with various detectors and inductively coupled plasma - mass spectrometry (ICP-MS) were applied to characterize the feedstocks and to understand how their properties affect the steam cracking performance. Both waste-derived naphtha fractions were rich in olefins and aromatics (~70% in MPW naphtha and ~51% in ML naphtha) next to traces of nitrogen, oxygen, chlorine and metals. ICP-MS analyses showed that sodium, potassium, silicon and iron were the most crucial metals that should be removed in further upgrading steps. Steam cracking of the waste-derived naphtha fractions resulted in lower light olefin yields compared to fossil naphtha used as benchmark, due to secondary reactions of aromatics and olefins. Coke formation of ML naphtha was slightly increased compared to fossil naphtha (+ ~50%), while that of MPW naphtha was more than ~180% higher. It was concluded that mild upgrading of the waste-derived naphtha fractions or dilution with fossil feedstocks is sufficient to provide feedstocks suitable for industrial steam cracking.


Asunto(s)
Plásticos , Pirólisis , Alquenos , Aceites de Plantas , Plásticos/química , Reciclaje , Vapor
9.
Bioresour Technol ; 340: 125655, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34388661

RESUMEN

Lignin is a wasted renewable source of biomass-derived value-added chemicals. However, due to its material resistance to degradation, it remains highly underutilized. In order to develop new, catalysed and more environment friendly reaction processes for lignin valorization, science has turned a selective concentrated attention to microbial enzymes. This present work looks at the enzymes involved with the main reference focus on the different elementary mechanisms of action/conversion rate kinetics. Pathways, like with laccases/peroxidases, employ radicals, which more readily result in polymerization than de-polymerization. The ß-etherase system interaction of proteins targets ß-O-4 ether covalent bond, which targets lower molecular weight product species. Enzymatic activity is influenced by a wide variety of different factors which need to be considered in order to obtain the best functionality and synthesis yields.


Asunto(s)
Lacasa , Lignina , Biomasa , Cinética , Lacasa/metabolismo , Peroxidasas/metabolismo
10.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204467

RESUMEN

Raising the awareness of carbon dioxide emissions, climate global warming and fossil fuel depletion has renewed the transition towards a circular economy approach, starting by addressing active bio-economic precepts that all portion amounts of wood are valorised as products. This is accomplished by minimizing residues formed (preferably no waste materials), maximizing reaction productivity yields, and optimising catalysed chemical by-products. Within framework structure determination, the present work aims at drawing a parallel between the characterisation of cellulose-lignin mixture (derived system model) liquefaction and real conversion process in the acidified ethylene glycol at moderate process conditions, i.e., 150 °C, ambient atmospheric pressure and potential bio-based solvent, for 4 h. Extended-processing liquid phase is characterized considering catalyst-transformed reactant species being produced, mainly recovered lignin-based polymer, by quantitative 31P, 13C and 1H nuclear magnetic resonance (NMR) spectroscopy, as well as the size exclusion- (SEC) or high performance liquid chromatography (HPLC) separation for higher or lower molecular weight compound compositions, respectively. Such mechanistic pathway analytics help to understand the steps in mild organosolv biopolymer fractionation, which is one of the key industrial barriers preventing a more widespread manufacturing of the biomass-derived (hydroxyl, carbonyl or carboxyl) aromatic monomers or oligomers for polycarbonates, polyesters, polyamides, polyurethanes and (epoxy) resins.

11.
Polymers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960994

RESUMEN

The aim of the study was to isolate lignin from organosolv, beech tree (Fagus sylvatica), and Japanese knotweed (Reynoutria japonica), to use it for paper surface and to replace part of the non-renewable product resources with bio-based ones. A total of nine coated samples with different lignin formulations and starch were compounded, prepared, and evaluated. The basic (grammage, thickness, specific density), mechanical (elongation at break, tensile, burst and tear indices), and barrier properties (contact angle, water penetration, water vapour permeability, kit test) of the coated papers were investigated. The analysis showed no significant difference in tensile properties between uncoated and coated samples. Furthermore, the decrease in water vapour transmission rate and the lower contact angle for coated samples were nevertheless confirmed. The novel coating materials show promising products with very good barrier properties. Finally, the correlation between structural, morphological, and (other) natural lignin-based factors was revealed, highlighting the importance of parameters such as the equivalence ratio of aliphatic and phenolic hydroxyl groups or the average molecular weight. Tuning functionality by design could optimise performance in the future.

12.
ACS Sustain Chem Eng ; 8(47): 17475-17486, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33335815

RESUMEN

In this study, acidolysis of benzyl phenyl ether (BPE), being a representative lignin model compound with the α-O-4 linkage, was examined in γ-valerolactone (GVL) and a GVL/water mixture, each time acidified with sulfuric acid. The product distribution was strongly affected by water used as a cosolvent, which was found to be advantageous by inhibiting the formation of larger structures and introducing reactive OH groups instead. The experimental results indicate the GVL/water ratio as an important parameter to attain an optimal hydrolytic α-ether bond cleavage. Differences between the organosolv lignins (molecular weight distribution, OH group content, and structural features with reaction time), isolated under moderate reaction conditions, supported the findings obtained using BPE. A beneficial effect of the added water is reflected in the higher aliphatic OH group content and less intact structure. Analysis of the reaction mechanism represents an initial step toward kinetics and structure-activity correlation of biorefining industrial resources.

13.
Biotechnol Biofuels ; 13: 66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308735

RESUMEN

BACKGROUND: 2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied. RESULTS: Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a K m value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h. CONCLUSIONS: Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.

14.
Sci Rep ; 10(1): 11037, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632147

RESUMEN

The selective lignin conversion into bio-based organic mono-aromatics is a major general challenge due to complex structure itself/additional macromolecule modifications, caused by the cleavage of the ether chemical bonds during the lignocellulosic biomass organosolv pulping in acidified aqueous ethanol. Herein, the acido-lysis of connected benzyl phenyl (BPE), being a representative model compound with α-O-4 linkage, was investigated in methanol, EtOH and 75 vol% EtOH/water mixture solutions, progressing each time with protonating sulfuric acid. The effect of the physical solvent properties, acidity of the reaction process media and temperature on rate was determined. Experiments suggested BPE following SN1 mechanism due to the formation of a stable primary carbocation/polarity. The product species distribution in non-aqueous functional alcohols was strongly affected. The addition of H2O was advantageous, especially for alkoxylation. Yield was reduced by a factor of 3, consequently preserving reactive hydroxyl group. Quantitative experimental results indicated key performance parameters to achieve optimum. Organosolv lignins were further isolated under significantly moderate conditions. Consecutive structural differences observed supported findings, obtained when using BPE. H2O presence was again found to grant a higher measured -OH content. Mechanistic pathway analysis thus represents the first step when continuing to kinetics, structure-activity relationships or bio-refining industrial resources.

15.
Nanomaterials (Basel) ; 10(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532039

RESUMEN

Utilization of magnetic nanoparticle-mediated conversion of electromagnetic energy into heat is gaining attention in catalysis as a source of heat needed for a substrate's chemical reaction (electrification of chemical conversions). We demonstrate that rapid and selective heating of magnetic nanoparticles opens a way to the rapid synthesis of a nanocatalyst. Magnetic heating caused rapid reduction of Ru3+ cations in the vicinity of the support material and enabled preparation of a Ru nanoparticle-bearing nanocatalyst. Comparative synthesis conducted under conventional heating revealed significantly faster Ru3+ reduction under magnetic heating. The faster kinetic was ascribed to the higher surface temperature of the support material caused by rapid magnetic heating. The nanocatalyst was rigorously tested in the hydrotreatment of furfural. The activity, selectivity and stability for furfural hydrogenation to furfuryl alcohol, a valuable biobased monomer, remained high even after four magnetic recycles.

16.
Sci Rep ; 5: 8859, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25748923

RESUMEN

Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Atmósfera/química , Guayacol/química , Guayacol/toxicidad , Especies de Nitrógeno Reactivo/química , Simulación por Computador , Hidrocarburos Aromáticos/química , Hidrocarburos Aromáticos/toxicidad , Modelos Químicos
17.
ChemSusChem ; 8(10): 1703-10, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25755008

RESUMEN

So far, in situ-generated Ni nanoparticles have been reported to be efficient catalysts for tar cracking during wood liquefaction by pyrolysis. Herein, their performance in further bio-oil conversion steps is evaluated. Nanoparticles were generated for the first time from a Ni-containing metal-organic framework, MIL-77, during the hydrotreatment of glycerol-solvolyzed lignocellulosic (LC) biomass. Reactions were conducted at 300 °C and the H2 pressure was 8 MPa in a slurry reactor. The catalytic activity and selectivity of the deoxygenation and hydrocracking reactions for real biomass-derived feedstock using in situ-generated nanoparticles was compared with Ni nanoparticles dispersed on a silica-alumina support (commercial Ni/SiO2 -Al2 O3 catalyst). The mass activity of the in situ-generated nanoparticles for hydrogenolysis was more than ten times higher in comparison to their commercial analogues, and their potential for the use in LC biorefinery is discussed.


Asunto(s)
Lignina/química , Nanopartículas del Metal/química , Níquel/química , Compuestos Organometálicos/química , Óxido de Aluminio/química , Biomasa , Catálisis , Dióxido de Silicio/química
18.
J Hazard Mater ; 262: 240-9, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24036147

RESUMEN

This work focuses on the development of a procedure to study the mechanism of leaching of lead from sub-micrometer lead glass particles using 0.3 mo ll(-1) HNO3 as a leachant. Glass particles with an effective size distribution range from 0.05 to 1.4 µm were generated by laser ablation (213 nm Nd:YAG laser) and collected on an inline 0.2 µm syringe filter. Subsequently, the glass particles on the filter were subjected to online leaching and continuous monitoring of lead (Pb-208) in the leachate by quadrupole ICP-MS. The lead leaching profile, aided by the particle size distribution information from cascade impaction, was numerically fitted to a mathematical model based on the glass intraparticle diffusion, liquid film distribution and thermodynamic glass-leachant distribution equilibrium. The findings of the modeling show that the rate-limiting step of leaching is the migration of lead from the core to the surface of the glass particle by an ion-exchange mechanism, governed by the apparent intraparticle lead diffusivity in glass which was calculated to be 3.1 × 10(-18) m(2)s(-1). Lead leaching is illustrated in the form of graphs and animations of intraparticle lead release (in time and intraparticle position) from particles with sizes of 0.1 and 0.3 µm.


Asunto(s)
Ácidos/química , Vidrio , Plomo/química , Modelos Teóricos , Silicatos/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA