Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Tissue Res ; 396(2): 213-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424269

RESUMEN

A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.


Asunto(s)
Animales Ponzoñosos , Matriz Extracelular , Sanguijuelas , Morfogénesis , Animales , Matriz Extracelular/metabolismo , Sanguijuelas/embriología
2.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240205

RESUMEN

Benthic marine invertebrates, such as corals, are often subjected to injury caused by several sources. Here, the differences and characteristics in injured and health tissues in terms of cellular components are shown through a histological investigation of the soft coral Anemonia viridis at 0 h, 6 h, 24 h, and 7 days after injury caused by tentacle amputation. In addition, a new tool was used for the first time in invertebrates, positron emission tomography, in order to investigate the events that occur during regeneration within a longer time period (0 h, 24 h, and 14 days after the tentacles were cut). Higher integrated density values were measured through a densitometric analysis in sections stained with Fontana-Masson at 24 h after the tentacles were cut. This suggests an increase in melanin-like containing cells and a subsequent increase in fibroblast-like cells differentiated by amoebocytes that converge to the lesion site in the early stages of inflammation and regeneration. This work provides, for the first time, an elucidation of the events that occur during wound-healing and regeneration in basal metazoan, focusing on the characterisation of immune cells and their role. Our results indicate that Mediterranean anthozoan proves to be a valuable model for studying regeneration. Many events highlighted in this research occur in different phyla, suggesting that they are highly conserved.


Asunto(s)
Antozoos , Anémonas de Mar , Animales , Invertebrados , Organismos Acuáticos , Cicatrización de Heridas
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901881

RESUMEN

Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.


Asunto(s)
Antioxidantes , Telomerasa , Humanos , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Telomerasa/metabolismo
4.
Fish Shellfish Immunol ; 127: 492-507, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35803505

RESUMEN

Plastics are a heterogeneous class of synthetic compounds that, due to their unique characteristics find numerous applications both in industrial and civil fields. However, despite the great advantages that these materials brought in everyday life, the plastic wastes resulting from their massive use represent one of the main environmental problems at the global level. Once released, plastics persist for a long time and are subjected both to biotic and abiotic processes leading to the formation of small particles, known as micro and to nanoplastics, that interact with organisms, accumulating inside tissues and risking to enter in the trophic chain. Among the different types of plastic, polypropylene (PP) is one of the diffused, widely exploited in food and textile industries for disposable packaging and to produce surgical masks. Owing to the huge distribution and the resultant abundant presence of PP waste products, it results necessary investigate the possible toxicity on living organisms. For these reasons, here we analyzed the effects of PP micro and nanoplastics dispersed in freshwater, using the medicinal leech Hirudo verbana as invertebrate model. To better follow the plastics fate, fluorescent particles, labeled with a fluorophore, have been used. Animals were examined at various timings after plastics exposure and results were analyzed by means of microscopy, immunofluorescent and molecular biology analyses. After assessing the entrance of PP fragments into leech tissues, the activation of the innate immune response was evaluated. The results show that the presence of micro and nanoplastics induces an initial physical protection that consists in the secretion of mucus, followed by an increase of blood vessels and the recruitment of immune cells, in particular macrophages. Moreover, macrophages were directly involved in both phagocytic and encapsulation processes, as demonstrated by acid phosphatase (ACP) histoenzymatic and Thioflavin-T assays, expressing specific pro-inflammatory factors, such as HvRNASET2 and HmAIF-1, as demonstrated by immunolocalization and qPCR experiments. Finally, the expression levels of genes related to oxidative stress-induced enzymes have been investigated, in order to evaluate the possible increase in reactive oxygen species (ROS), due to the entry into the leech tissues of PP micro and nanoplastics. This work allows deepening the current knowledge of the possible harmful effects on human health deriving from micro and nanoplastics dispersion, leading new insight about freshwater ecosystems that often represent the first environments interested in plastic pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Humanos , Invertebrados , Microplásticos/toxicidad , Plásticos/toxicidad , Polipropilenos , Contaminantes Químicos del Agua/toxicidad
5.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743284

RESUMEN

The aim of this Special Issue is to highlight the close functional and highly conserved link between innate immunity, homeostasis maintenance, inflammation, tissue remodeling and regeneration [...].


Asunto(s)
Inmunidad Innata , Inflamación , Animales , Homeostasis , Invertebrados
6.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555595

RESUMEN

The invertebrate leech Hirudo verbana represents a powerful experimental animal model for improving the knowledge about the functional interaction between the extracellular matrix (ECM) and cells within the tissue microenvironment (TME), and the key role played by ECM stiffness during development and growth. Indeed, the medicinal leech is characterized by a simple anatomical organization reproducing many aspects of the basic biological processes of vertebrates and in which a rapid spatiotemporal development is well established and easily assessed. Our results show that ECM structural organization, as well as the amount of fibrillar and non-fibrillar collagen are deeply different from hatching leeches to adult ones. In addition, the changes in ECM remodelling occurring during the different leech developmental stages, leads to a gradient of stiffness regulating both the path of migratory cells and their fates. The ability of cells to perceive and respond to changes in ECM composition and mechanics strictly depend on nuclear or cytoplasmic expression of Yes-Associated Protein 1 (YAP1), a key mediator converting mechanical signals into transcriptional outputs, expression, and activation.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Sanguijuelas/química , Matriz Extracelular , Factores de Transcripción , Citoplasma
7.
Pflugers Arch ; 473(2): 151-165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32955611

RESUMEN

The purpose of this study is to investigate the presence of nervous fibers and expression of TRP channels in samples harvested during decompressive/fusion spine surgeries from patients affected by chronic low back pain (CLBP). The aim was to understand if members of this family of receptors played a role in detection and processing of painful stimuli, to eventually define them as potential targets for CLBP alleviation. Expression of transient receptor potential (TRP) channels (A1, V1, V2, V4, and M8) was evaluated in samples from different periarticular sites of 6 patients affected by CLBP, at both protein and transcript levels. The capsular connective pathological tissue appeared infiltrated by sensitive unmyelinated nervous fibers. An increase in TRP channel mRNAs and proteins was observed in the pathological capsule compared with tissues collected from the non-symptomatic area in five of the six analyzed patients, independently by the location and number of affected sites. In particular, TRPV4 and TRPM8 were consistently upregulated in pathological tissues. Interestingly, the only patient showing a different pattern of expression also had a different clinical history. TRPV4 and TRPM8 channels may play a role in CLBP and warrant further investigations as possible therapeutic targets.


Asunto(s)
Dolor Crónico/metabolismo , Dolor de la Región Lumbar/metabolismo , Columna Vertebral/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Analgésicos/uso terapéutico , Dolor Crónico/genética , Dolor Crónico/patología , Dolor Crónico/prevención & control , Humanos , Dolor de la Región Lumbar/genética , Dolor de la Región Lumbar/patología , Dolor de la Región Lumbar/prevención & control , Terapia Molecular Dirigida , Manejo del Dolor , Transducción de Señal , Columna Vertebral/efectos de los fármacos , Columna Vertebral/ultraestructura , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Regulación hacia Arriba
8.
Nanomedicine ; 36: 102424, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174417

RESUMEN

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidasa , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacología , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/farmacología , Fibronectinas/antagonistas & inhibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología
9.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430241

RESUMEN

Several types of 3-dimensional (3D) biological matrices are employed for clinical and surgical applications, but few indications are available to guide surgeons in the choice among these materials. Here we compare the in vitro growth of human primary fibroblasts on different biological matrices commonly used for clinical and surgical applications and the activation of specific molecular pathways over 30 days of growth. Morphological analyses by Scanning Electron Microscopy and proliferation curves showed that fibroblasts have different ability to attach and proliferate on the different biological matrices. They activated similar gene expression programs, reducing the expression of collagen genes and myofibroblast differentiation markers compared to fibroblasts grown in 2D. However, differences among 3D matrices were observed in the expression of specific metalloproteinases and interleukin-6. Indeed, cell proliferation and expression of matrix degrading enzymes occur in the initial steps of interaction between fibroblast and the investigated meshes, whereas collagen and interleukin-6 expression appear to start later. The data reported here highlight features of fibroblasts grown on different 3D biological matrices and warrant further studies to understand how these findings may be used to help the clinicians choose the correct material for specific applications.


Asunto(s)
Diferenciación Celular/genética , Colágeno Tipo I/genética , Enfermedades de la Piel/cirugía , Piel/crecimiento & desarrollo , Movimiento Celular/genética , Proliferación Celular/genética , Matriz Extracelular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Fibronectinas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Interleucina-6/genética , Metaloproteasas/genética , Microscopía Electrónica de Rastreo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Cultivo Primario de Células , Piel/metabolismo , Enfermedades de la Piel/metabolismo
10.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073146

RESUMEN

Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.


Asunto(s)
Matriz Extracelular/metabolismo , Regeneración , Anémonas de Mar/crecimiento & desarrollo , Cicatrización de Heridas , Animales , Colágeno Tipo I/metabolismo
11.
Cell Tissue Res ; 380(3): 565-579, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32043208

RESUMEN

The RNASET2 ribonuclease, belonging to the highly conserved RH/T2/s RNase gene family, has been recently shown to modulate inflammatory processes in both vertebrates and invertebrates. Indeed, the RNASET2 protein acts as a chemoattractor for macrophages in both in vitro and in vivo experimental settings and its expression significantly increases following bacterial infections. Moreover, we recently observed that injection of human recombinant RNASET2 protein in the body wall of the medicinal leech (a consolidated invertebrate model for both immune response and tissue regeneration) not only induced immune cell recruitment but also apparently triggered massive connective tissue remodelling as well. Based on these data, we evaluate here a possible role of leech recombinant RNASET2 protein (rHvRNASET2) in connective tissue remodelling by characterizing the cell types involved in this process through histochemical, morphological and immunofluorescent assays. Moreover, a time-course expression analysis of newly synthesized pro-collagen1α1 (COL1α1) and basic FGF receptor (bFGFR, a known fibroblast marker) following rHvRNASET2 injection in the leech body wall further supported the occurrence of rHvRNASET2-mediated matrix remodelling. Human MRC-5 fibroblast cells were also investigated in order to evaluate their pattern of collagen neosynthesis driven by rHvRNASET2 injection.Taken together, the data reported in this work provide compelling evidence in support of a pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved crosstalk between inflammatory response and regenerative process, based on macrophage recruitment and fibroblast activation, coupled to a massive extracellular reorganization.


Asunto(s)
Colágeno Tipo I/metabolismo , Tejido Conectivo/efectos de los fármacos , Hirudo medicinalis/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/farmacología , Ribonucleasas/farmacología , Animales , Línea Celular , Cadena alfa 1 del Colágeno Tipo I , Tejido Conectivo/fisiología , Fibroblastos/efectos de los fármacos , Humanos
12.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352806

RESUMEN

Recent studies performed on the invertebrate model Hirudo verbana (medicinal leech) suggest that the T2 ribonucleic enzyme HvRNASET2 modulates the leech's innate immune response, promoting microbial agglutination and supporting phagocytic cells recruitment in challenged tissues. Indeed, following injection of both lipoteichoic acid (LTA) and Staphylococcus aureus in the leech body wall, HvRNASET2 is expressed by leech type I granulocytes and induces bacterial aggregation to aid macrophage phagocytosis. Here, we investigate the HvRNASET2 antimicrobial role, in particular assessing the effects on the Gram-negative bacteria Escherichia coli. For this purpose, starting from the three-dimensional molecule reconstruction and in silico analyses, the antibacterial activity was evaluated both in vitro and in vivo. The changes induced in treated bacteria, such as agglutination and alteration in wall integrity, were observed by means of light, transmission and scanning electron microscopy. Moreover, immunogold, AMPs (antimicrobial peptides) and lipopolysaccharide (LPS) binding assays were carried out to evaluate HvRNASET2 interaction with the microbial envelopes and the ensuing ability to affect microbial viability. Finally, in vivo experiments confirmed that HvRNASET2 promotes a more rapid phagocytosis of bacterial aggregates by macrophages, representing a novel molecule for counteracting pathogen infections and developing alternative solutions to improve human health.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Hirudo medicinalis/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Ribonucleasas/química , Ribonucleasas/farmacología , Aglutinación , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Hirudo medicinalis/efectos de los fármacos , Hirudo medicinalis/metabolismo , Imagenología Tridimensional , Inmunidad Innata , Macrófagos/efectos de los fármacos , Fagocitosis , Conformación Proteica , Homología de Secuencia de Aminoácido
13.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751344

RESUMEN

Human breast adenocarcinoma cells (MCF7) grow in three-dimensional culture as spheroids that represent the structural complexity of avascular tumors. Therefore, spheroids offer a powerful tool for studying cancer development, aggressiveness, and drug resistance. Notwithstanding the large amount of data regarding the formation of MCF7 spheroids, a detailed description of the morpho-functional changes during their aggregation and maturation is still lacking. In this study, in addition to the already established role of gap junctions, we show evidence of tunneling nanotube (TNT) formation, amyloid fibril production, and opening of large stable cellular bridges, thus reporting the sequential events leading to MCF7 spheroid formation. The variation in cell phenotypes, sustained by dynamic expression of multiple proteins, leads to complex networking among cells similar to the sequence of morphogenetic steps occurring in embryogenesis/organogenesis. On the basis of the observation that early events in spheroid formation are strictly linked to the redox homeostasis, which in turn regulate amyloidogenesis, we show that the administration of N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger that reduces the capability of cells to produce amyloid fibrils, significantly affects their ability to aggregate. Moreover, cells aggregation events, which exploit the intrinsic adhesiveness of amyloid fibrils, significantly decrease following the administration during the early aggregation phase of neutral endopeptidase (NEP), an amyloid degrading enzyme.


Asunto(s)
Acetilcisteína/farmacología , Amiloide/química , Depuradores de Radicales Libres/farmacología , Uniones Comunicantes/ultraestructura , Homeostasis/efectos de los fármacos , Esferoides Celulares/ultraestructura , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Agregación Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Expresión Génica , Homeostasis/genética , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Células MCF-7 , Neprilisina/farmacología , Oxidación-Reducción , Fenotipo , Proteolisis , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antígeno gp100 del Melanoma/genética , Antígeno gp100 del Melanoma/metabolismo
14.
Cell Tissue Res ; 377(2): 245-257, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30919048

RESUMEN

Despite extensive investigation focused on both the molecular characteristics and the expression level of Toll-like receptors (TLRs) during the inflammatory response in vertebrates, few data are available in the literature on the role of these proteins in invertebrate's immune response. Here, we propose the medicinal leech as a valuable model to better elucidate the role of TLR4 and its related products, such as tumor necrosis factor (TNF-α), after activation of the leech peripheral immune system with the endogenous medicinal leech recombinant allograft inflammatory factor-1 (rHmAIF-1) or with an exogenous stimulus, such as lipopolysaccharide (LPS). Our results indicate that activated macrophages (HmAIF-1+) and granulocytes (CD11b+) express both TLR4 and its coreceptor CD14. Moreover, functional studies performed by injecting a cyanobacterium selective TLR4 antagonist CyP demonstrated that only the TLR4 pathway was blocked, while the immune response caused by lipoteichoic acid (LTA) treatment is not affected. These results are consistent with literature on vertebrates, indicating that TLR4 functions as a LPS receptor while the recognition of LTA may involve other pathways.


Asunto(s)
Modelos Animales de Enfermedad , Granulocitos/inmunología , Inflamación/inmunología , Sanguijuelas , Macrófagos/inmunología , Receptor Toll-Like 4 , Animales , Proteínas de Unión al Calcio/inmunología , Granulocitos/citología , Aplicación de Sanguijuelas , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/citología , Proteínas de Microfilamentos/inmunología , Ácidos Teicoicos/farmacología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/fisiología , Factor de Necrosis Tumoral alfa/inmunología
15.
Cell Tissue Res ; 378(2): 221-238, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31053891

RESUMEN

The larvae of the black soldier fly (BSF), Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae), are considered an efficient system for the bioconversion of organic waste into usable products, such as insect protein for animal feed and bioactive molecules. Despite the great interest toward H. illucens and its biotechnological applications, information on the biology of this insect is still scarce. In particular, no data on the structural and functional properties of the digestive system of the adult insect are available and it is a common belief that the fly does not eat. In the present work, we therefore investigate the remodeling process of the BSF larval midgut during metamorphosis, analyze the morphofunctional properties of the adult midgut, evaluate if the fly is able to ingest and digest food and assess whether the feeding supply influences the adult performances. Our results show that the larval midgut of H. illucens is removed during metamorphosis and a new pupal-adult epithelium, characterized by peculiar features compared to the larval organ, is formed by proliferation and differentiation of midgut stem cells. Moreover, our experiments indicate that the adult insect possesses a functional digestive system and that food administration affects the longevity of the fly. These data not only demonstrate that the adult BSF is able to eat but also open up the possibility to manipulate the feeding substrate of the fly to improve its performances in mass rearing procedures.


Asunto(s)
Sistema Digestivo/metabolismo , Dípteros/fisiología , Proteínas de Insectos/metabolismo , Larva/fisiología , Pupa/fisiología , Alimentación Animal , Animales , Metamorfosis Biológica
16.
Cell Tissue Res ; 368(2): 337-351, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28070637

RESUMEN

In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68+ and HmAIF-1+ macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.


Asunto(s)
Tejido Conectivo/patología , Hirudo medicinalis/fisiología , Inflamación/patología , Proteínas Recombinantes/farmacología , Ribonucleasas/farmacología , Proteínas Supresoras de Tumor/farmacología , Fosfatasa Ácida/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Tejido Conectivo/efectos de los fármacos , Crioultramicrotomía , Combinación de Medicamentos , Pruebas de Enzimas , Técnica del Anticuerpo Fluorescente , Hirudo medicinalis/anatomía & histología , Hirudo medicinalis/efectos de los fármacos , Hirudo medicinalis/ultraestructura , Humanos , Laminina/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteoglicanos/metabolismo
17.
Biol Cell ; 108(6): 161-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26847147

RESUMEN

BACKGROUND INFORMATION: While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion. RESULTS: We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism. CONCLUSIONS: These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species. SIGNIFICANCE: To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.


Asunto(s)
Evolución Molecular , Matriz Extracelular/metabolismo , Proteínas de Insectos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Plasminógeno/metabolismo , Avispas/metabolismo , Animales , Matriz Extracelular/genética , Proteínas de Insectos/genética , Fosfopiruvato Hidratasa/genética , Plasminógeno/genética , Avispas/genética
18.
Proc Natl Acad Sci U S A ; 110(20): 8140-5, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630276

RESUMEN

In recent years, the role played by the stromal microenvironment has been given growing attention in order to achieve a full understanding of cancer initiation and progression. Because cancer is a tissue-based disease, the integrity of tissue architecture is a major constraint toward cancer growth. Indeed, a large contribution of the natural resistance to cancer stems from stromal microenvironment components, the dysregulation of which can facilitate cancer occurrence. For instance, recent experimental evidence has highlighted the involvement of stromal cells in ovarian carcinogenesis, as epitomized by ovarian xenografts obtained by a double KO of the murine Dicer and Pten genes. Likewise, we reported the role of an ancient extracellular RNase, called Ribonuclease T2 (RNASET2), within the ovarian stromal microenvironment. Indeed, hyperexpression of RNASET2 is able to control tumorigenesis by recruiting macrophages (mostly of the anticancer M1 subtype) at the tumor sites. We present biological data obtained by RNASET2 silencing in the poorly tumorigenetic and highly RNASET2-expressing human OVCAR3 cell line. RNASET2 knockdown was shown to stimulate in vivo tumor growth early after microinjection of OVCAR3 cells in nude mice. Moreover, we have investigated by molecular profiling the in vivo expression signature of human and mouse cell xenografts and disclosed the activation of pathways related to activation of the innate immune response and modulation of ECM components. Finally, we provide evidence for a role of RNASET2 in triggering an in vitro chemotactic response in macrophages. These results further highlight the critical role played by the microenvironment in RNASET2-mediated ovarian tumor suppression, which could eventually contribute to better clarify the pathogenesis of this disease.


Asunto(s)
Endorribonucleasas/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Animales , Línea Celular Tumoral , Quimiotaxis , Endorribonucleasas/genética , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Filogenia , Reacción en Cadena de la Polimerasa , Células U937
19.
Cell Tissue Res ; 359(3): 853-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25435328

RESUMEN

Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteínas de Unión al ADN/farmacología , Hirudo medicinalis/citología , Hirudo medicinalis/inmunología , Inmunidad Innata/efectos de los fármacos , Macrófagos/citología , Homología de Secuencia de Aminoácido , Animales , Anticuerpos/farmacología , Biomarcadores/metabolismo , Western Blotting , Movimiento Celular/inmunología , Forma de la Célula/efectos de los fármacos , Proteínas de Unión al ADN/química , Hirudo medicinalis/microbiología , Hirudo medicinalis/ultraestructura , Inmunohistoquímica , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Proteínas Recombinantes/farmacología
20.
Cell Tissue Res ; 361(2): 509-28, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25563842

RESUMEN

The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.


Asunto(s)
Bombyx/citología , Bombyx/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Células Madre/citología , Animales , Muerte Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales/citología , Larva/citología , Larva/crecimiento & desarrollo , Metamorfosis Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA