Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Brain Res ; 236(5): 1293-1307, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29492588

RESUMEN

In a sequence of arm movements, any given segment could be influenced by its predecessors (carry-over coarticulation) and by its successor (anticipatory coarticulation). To study the interdependence of movement segments, we asked participants to move an object from an initial position to a first and then on to a second target location. The task involved ten joint angles controlling the three-dimensional spatial path of the object and hand. We applied the principle of the uncontrolled manifold (UCM) to analyze the difference between joint trajectories that either affect (non-motor equivalent) or do not affect (motor equivalent) the hand's trajectory in space. We found evidence for anticipatory coarticulation that was distributed equally in the two directions in joint space. We also found strong carry-over coarticulation, which showed clear structure in joint space: More of the difference between joint configurations observed for different preceding movements lies in directions in joint space that leaves the hand's path in space invariant than in orthogonal directions in joint space that varies the hand's path in space. We argue that the findings are consistent with anticipatory coarticulation reflecting processes of movement planning that lie at the level of the hand's trajectory in space. Carry-over coarticulation may reflect primarily processes of motor control that are governed by the principle of the UCM, according to which changes that do not affect the hand's trajectory in space are not actively delimited. Two follow-up experiments zoomed in on anticipatory coarticulation. These experiments strengthened evidence for anticipatory coarticulation. Anticipatory coarticulation was motor-equivalent when visual information supported the steering of the object to its first target, but was not motor equivalent when that information was removed. The experiments showed that visual updating of the hand's path in space when the object approaches the first target only affected the component of the joint difference vector orthogonal to the UCM, consistent with the UCM principle.


Asunto(s)
Brazo/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino , Rango del Movimiento Articular/fisiología , Adulto Joven
2.
PLoS Comput Biol ; 12(9): e1005092, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27657545

RESUMEN

A central task in the analysis of human movement behavior is to determine systematic patterns and differences across experimental conditions, participants and repetitions. This is possible because human movement is highly regular, being constrained by invariance principles. Movement timing and movement path, in particular, are linked through scaling laws. Separating variations of movement timing from the spatial variations of movements is a well-known challenge that is addressed in current approaches only through forms of preprocessing that bias analysis. Here we propose a novel nonlinear mixed-effects model for analyzing temporally continuous signals that contain systematic effects in both timing and path. Identifiability issues of path relative to timing are overcome by using maximum likelihood estimation in which the most likely separation of space and time is chosen given the variation found in data. The model is applied to analyze experimental data of human arm movements in which participants move a hand-held object to a target location while avoiding an obstacle. The model is used to classify movement data according to participant. Comparison to alternative approaches establishes nonlinear mixed-effects models as viable alternatives to conventional analysis frameworks. The model is then combined with a novel factor-analysis model that estimates the low-dimensional subspace within which movements vary when the task demands vary. Our framework enables us to visualize different dimensions of movement variation and to test hypotheses about the effect of obstacle placement and height on the movement path. We demonstrate that the approach can be used to uncover new properties of human movement.

3.
Exp Brain Res ; 233(9): 2555-69, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26003130

RESUMEN

Coarticulation indicates a dependence of a movement segment on a preceding segment (carry-over coarticulation) or on the segment that follows (anticipatory coarticulation). Here we study coarticulation in multidegrees of freedom human arm movements. We asked participants to transport a cylinder from a starting position to a center target and on to a final target. In this naturalistic setting, the human arm has ten degrees of freedom and is thus comfortably redundant for the task. We studied coarticulation by comparing movements between the same spatial locations that were either preceded by different end-effector paths (carry-over coarticulation) or followed by different end-effector paths (anticipatory coarticulation). We found no evidence for coarticulation at the level of the end-effector. We found very clear evidence, however, for carry-over, not for anticipatory coarticulation at the joint level. We used the concept of the uncontrolled manifold to systematically establish coarticulation as a form of motor equivalence, in which most of the difference between different movement contexts lies within the uncontrolled manifold that leaves the end-effector invariant. The findings are consistent with movement planning occurring at the level of the end-effector, and those movement plans being transformed to the joint level by a form of inverse kinematics. The observation of massive self-motion excludes an account that is solely based on a kinematic pseudo-inverse.


Asunto(s)
Brazo/fisiología , Fenómenos Biomecánicos/fisiología , Fuerza de la Mano/fisiología , Articulaciones/inervación , Movimiento/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Desempeño Psicomotor/fisiología , Adulto Joven
4.
Exp Brain Res ; 222(3): 185-200, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22996050

RESUMEN

By studying human movement in the laboratory, a number of regularities and invariants such as planarity and the principle of isochrony have been discovered. The theoretical idea has gained traction that movement may be generated from a limited set of movement primitives that would encode these invariants. In this study, we ask if invariants and movement primitives capture naturalistic human movement. Participants moved objects to target locations while avoiding obstacles using unconstrained arm movements in three dimensions. Two experiments manipulated the spatial layout of targets, obstacles, and the locations in the transport movement where an obstacle was encountered. We found that all movement trajectories were planar, with the inclination of the movement plane reflecting the obstacle constraint. The timing of the movement was consistent with both global isochrony (same movement time for variable path lengths) and local isochrony (same movement time for two components of the obstacle avoidance movement). The identified movement primitives of transport (movement from start to target position) and lift (movement perpendicular to transport within the movement plane) varied independently with obstacle conditions. Their scaling accounted for the observed double peak structure of movement speed. Overall, the observed naturalistic movement was astoundingly regular. Its decomposition into primitives suggests simple mechanisms for movement generation.


Asunto(s)
Brazo/fisiología , Reacción de Prevención/fisiología , Modelos Biológicos , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Conducta Espacial/fisiología , Adulto , Análisis de Varianza , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Factores de Tiempo , Adulto Joven
5.
Motor Control ; 15(1): 5-33, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21339512

RESUMEN

This paper presents a comparative conceptual review of speech and limb motor control. Speech is essentially cognitive in nature and constrained by the rules of language, while limb movement is often oriented to physical objects. We discuss the issue of intrinsic vs. extrinsic variables underlying the representations of motor goals as well as whether motor goals specify terminal postures or entire trajectories. Timing and coordination is recognized as an area of strong interchange between the two domains. Although coordination among different motor acts within a sequence and coarticulation are central to speech motor control, they have received only limited attention in manipulatory movements. The biomechanics of speech production is characterized by the presence of soft tissue, a variable number of degrees of freedom, and the challenges of high rates of production, while limb movements deal more typically with inertial constraints from manipulated objects. This comparative review thus leads us to identify many strands of thinking that are shared across the two domains, but also points us to issues on which approaches in the two domains differ. We conclude that conceptual interchange between the fields of limb and speech motor control has been useful in the past and promises continued benefit.


Asunto(s)
Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Habla/fisiología , Encéfalo/fisiología , Electromiografía , Humanos , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Fonación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA