Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 192(10): 645, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32939667

RESUMEN

There is significant international interest in developing current-based marine and hydrokinetic (MHK) technologies to capture the power of tidal energy. However, concerns have been raised regarding the ecological effects of these projects on fish, including the risk of blade collision and behavioral impacts such as the disruption of migratory behavior and food acquisition and displacement from preferred habitats. We conducted mobile hydroacoustic surveys to track fish as they approached a tidal turbine deployed in Cobscook Bay, Maine. There was a significant decline in fish numbers with decreasing distance to the turbine, beginning approximately 140 m from the turbine. Similar declines were not observed at control transects or when the turbine was not spinning. The decline in fish numbers appeared to be the result of horizontal displacement, not vertical, movements to avoid the turbine. Noise rather than visual cues or flow field disturbance seemed to be a likely explanation for the reduced number of fish near the turbine. This finding, combined with near-field blade collision studies indicating a low probability of encounter, suggests that a single turbine poses a low collision risk to pelagic fish and that a single turbine is likely to result in minimal behavioral responses by fish. However, the risk may be different with additional devices, which will become more relevant as commercial-scale MHK arrays come under consideration. Therefore, the risks associated with commercial-scale operations will ultimately have to be evaluated to fully understand the ecological impacts of MHK devices.


Asunto(s)
Monitoreo del Ambiente , Peces , Animales , Ecosistema , Maine , Ruido
2.
Environ Manage ; 59(1): 154-173, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27734087

RESUMEN

The U.S. Army Corps of Engineers is conducting the Great Lakes and Mississippi River Interbasin Study to identify the highest risk aquatic nuisance species currently established in either the Mississippi River Basin or the Great Lakes Basin and prevent their movement into a new basin. The Great Lakes and Mississippi River Interbasin Study focuses specifically on aquatic nuisance species movement through the Chicago Area Waterway System, a multi-use waterway connecting the two basins. In support of Great Lakes and Mississippi River Interbasin Study, we conducted a qualitative risk assessment for 33 aquatic nuisance species over a 50-year period of analysis based on the probability of aquatic nuisance species establishing in a new basin and the environmental, economic, and sociopolitical consequences of their establishment. Probability of establishment and consequences of establishment were assigned qualitative ratings of high, medium, or low after considering the species' current location, mobility, habitat suitability, and impacts in previously invaded systems. The establishment and consequence ratings were then combined into an overall risk rating. Seven species were characterized as posing a medium risk and two species as posing a high risk to the Mississippi River Basin. Three species were characterized as posing a medium risk to the Great Lakes Basin, but no high-risk species were identified for this basin. Risk increased over time for some aquatic nuisance species based on the time frame in which these species were considered likely to establish in the new basin. Both species traits and the need to balance multiple uses of the Chicago Area Waterway System must be considered when identifying control measures to prevent aquatic nuisance species movement between the two basins.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Monitoreo del Ambiente/métodos , Especies Introducidas/tendencias , Great Lakes Region , Lagos , Medición de Riesgo , Ríos , Estados Unidos
3.
Environ Manage ; 55(1): 244-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25331641

RESUMEN

The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.


Asunto(s)
Ecosistema , Ambiente , Energía Solar , Biota , Agua Subterránea/química , Ríos/química , Sudoeste de Estados Unidos
4.
Environ Monit Assess ; 186(11): 7075-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25129382

RESUMEN

Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.


Asunto(s)
Clima Desértico , Ecosistema , Monitoreo del Ambiente/métodos , Ríos/química , Ambiente , Geología , Agua Subterránea , Humanos , Estaciones del Año , Suelo
5.
Environ Microbiome ; 18(1): 10, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36805022

RESUMEN

BACKGROUND: Microorganisms such as coliform-forming bacteria are commonly used to assess freshwater quality for drinking and recreational use. However, such organisms do not exist in isolation; they exist within the context of dynamic, interactive microbial communities which vary through space and time. Elucidating spatiotemporal microbial dynamics is imperative for discriminating robust community changes from ephemeral ecological trends, and for improving our overall understanding of the relationship between microbial communities and ecosystem health. We conducted a seven-year (2013-2019) microbial time-series investigation in the Chicago Area Waterways (CAWS): an urban river system which, in 2016, experienced substantial upgrades to disinfection processes at two wastewater reclamation plants (WRPs) that discharge into the CAWS and improved stormwater capture, to improve river water quality and reduce flooding. Using culture-independent and culture-dependent approaches, we compared CAWS microbial ecology before and after the intervention. RESULTS: Examinations of time-resolved beta distances between WRP-adjacent sites showed that community similarity measures were often consistent with the spatial orientation of site locations to one another and to the WRP outfalls. Fecal coliform results suggested that upgrades reduced coliform-associated bacteria in the effluent and the downstream river community. However, examinations of whole community changes through time suggest that the upgrades did little to affect overall riverine community dynamics, which instead were overwhelmingly driven by yearly patterns consistent with seasonality. CONCLUSIONS: This study presents a systematic effort to combine 16S rRNA gene amplicon sequencing with traditional culture-based methods to evaluate the influence of treatment innovations and systems upgrades on the microbiome of the Chicago Area Waterway System, representing the longest and most comprehensive characterization of the microbiome of an urban waterway yet attempted. We found that the systems upgrades were successful in improving specific water quality measures immediately downstream of wastewater outflows. Additionally, we found that the implementation of the water quality improvement measures to the river system did not disrupt the overall dynamics of the downstream microbial community, which remained heavily influenced by seasonal trends. Such results emphasize the dynamic nature of microbiomes in open environmental systems such as the CAWS, but also suggest that the seasonal oscillations remain consistent even when perturbed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA