Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Parasitol ; 230: 108159, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34563508

RESUMEN

Trypanosoma rangeli is a non-virulent hemoflagellate parasite infecting humans, wild and domestic mammals in Central and Latin America. The share of genotypic, phenotypic, and biological similarities with the virulent, human-infective T. cruzi and T. brucei, allows comparative studies on mechanisms of pathogenesis. In this study, investigation of the T. rangeli Arginine Kinase (TrAK) revealed two highly similar copies of the AK gene in this taxon, and a distinct expression profile and activity between replicative and infective forms. Although TrAK expression seems stable during epimastigotes growth, the enzymatic activity increases during the exponential growth phase and decreases from the stationary phase onwards. No differences were observed in activity or expression levels of TrAK during in vitro differentiation from epimastigotes to infective forms, and no detectable AK expression was observed for blood trypomastigotes. Overexpression of TrAK by T. rangeli showed no effects on the in vitro growth pattern, differentiation to infective forms, or infectivity to mice and triatomines. Although differences in TrAK expression and activity were observed among T. rangeli strains from distinct genetic lineages, our results indicate an up-regulation during parasite replication and putative post-translational myristoylation of this enzyme. We conclude that up-regulation of TrAK activity in epimastigotes appears to improve proliferation fitness, while reduced TrAK expression in blood trypomastigotes may be related to short-term and subpatent parasitemia in mammalian hosts.


Asunto(s)
Arginina Quinasa/metabolismo , Procesamiento Proteico-Postraduccional , Trypanosoma cruzi/enzimología , Trypanosoma rangeli/enzimología , Secuencia de Aminoácidos , Animales , Arginina Quinasa/biosíntesis , Arginina Quinasa/clasificación , Arginina Quinasa/genética , Western Blotting , ADN Protozoario/aislamiento & purificación , Electroforesis en Gel Bidimensional , Femenino , Flagelos/enzimología , Técnica del Anticuerpo Fluorescente Indirecta , Ratones , Ratones Endogámicos BALB C , Filogenia , Alineación de Secuencia , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Trypanosoma rangeli/clasificación , Trypanosoma rangeli/genética , Trypanosoma rangeli/patogenicidad , Regulación hacia Arriba , Virulencia
2.
Exp Parasitol ; 204: 107727, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31344389

RESUMEN

BACKGROUND: Trypanosoma rangeli is a protozoan parasite that is non-virulent to the mammalian host and is morphologically and genomically related to Trypanosoma cruzi, whose proliferation within the mammalian host is controversially discussed. OBJECTIVES: We aimed to investigate the T. rangeli cell cycle in vitro and in vivo by characterizing the timespan of the parasite life cycle and by proposing a molecular marker to assess cytokinesis. METHODOLOGY: The morphological events and their timing during the cell cycle of T. rangeli epimastigotes were assessed using DNA staining, flagellum labelling and bromodeoxyuridine incorporation. Messenger RNA levels of four genes previously associated with the cell cycle of trypanosomatids (AUK1, PLK, MOB1 and TRACK) were evaluated in the different T. rangeli forms. FINDINGS: T. rangeli epimastigotes completed the cell cycle in vitro in 20.8 h. PLK emerged as a potential molecular marker for cell division, as its mRNA levels were significantly increased in exponentially growing epimastigotes compared with growth-arrested parasites or in vitro-differentiated trypomastigotes. PLK expression in T. rangeli can be detected near the flagellum protrusion site, reinforcing its role in the cell cycle. Interestingly, T. rangeli bloodstream trypomastigotes exhibited very low mRNA levels of PLK and were almost entirely composed of parasites in G1 phase. MAIN CONCLUSIONS: Our work is the first to describe the T. rangeli cell cycle in vitro and proposes that PLK mRNA levels could be a useful tool to investigate the T. rangeli ability to proliferate within the mammalian host bloodstream.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Citocinesis/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/análisis , Trypanosoma rangeli/citología , Animales , Bromodesoxiuridina/metabolismo , Ciclo Celular/efectos de los fármacos , Citocinesis/genética , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Hidroxiurea/farmacología , Ratones , Ratones Endogámicos BALB C , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , Factores de Tiempo , Trypanosoma rangeli/efectos de los fármacos , Trypanosoma rangeli/enzimología , Trypanosoma rangeli/genética , Tripanosomiasis/parasitología , Quinasa Tipo Polo 1
3.
Parasitol Res ; 117(8): 2403-2410, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29858942

RESUMEN

Mixed infections with Trypanosoma cruzi and Trypanosoma rangeli and their different genetic groups occur frequently in vertebrate hosts and are difficult to detect by serology. In the present study, we evaluated the limit of detection of polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis of cytochrome oxidase II (COII) for the identification of genetic groups of these two parasites in blood and tissue from vertebrate hosts. Reconstitution experiments were performed using human blood (TcI/TcII and KP1+/KP1-) and mouse tissue (TcI/TcII). We tested blood from patients who were in the chronic phase of Chagas disease and tissue from animals that were experimentally infected with all possible combinations of six discrete typing units. In blood samples, T. cruzi and T. rangeli were detected when 5 parasites (pa) were present in the sample, and genetic groups were identified when at least 50 pa were present in the sample. T. cruzi alone could be detected with 1 pa and genotyped (TcI/TcII) with 2 pa. T. rangeli was detected with 2 pa and genotyped (KP+/KP1-) with 25 pa. The present method more readily detected TcII and KP1- in both admixtures and alone. In mouse tissue, TcI and TcII were detected with at least 25 pa. The analysis of blood samples from patients and tissue from animals that were experimentally infected revealed low parasite loads in these hosts, which were below the limit of detection of the present method and could not be genotyped. Our findings indicate that the performance of PCR/RFLP analysis of COII is directly related to the amount and proportion of parasites that are present in the sample and the genetic groups to which the parasites belong.


Asunto(s)
Enfermedad de Chagas/parasitología , Enfermedad de Chagas/veterinaria , Complejo IV de Transporte de Electrones/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Proteínas Protozoarias/genética , Trypanosoma cruzi/aislamiento & purificación , Trypanosoma rangeli/aislamiento & purificación , Animales , Genotipo , Humanos , Límite de Detección , Ratones , Enfermedades de los Roedores/parasitología , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma rangeli/enzimología , Trypanosoma rangeli/genética
4.
Antimicrob Agents Chemother ; 59(8): 4770-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033728

RESUMEN

Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine ß-synthase (CßS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CßS (LbrCßS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCßS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCßS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis.


Asunto(s)
Cistationina betasintasa/genética , Cisteína Sintasa/genética , Leishmania braziliensis/genética , Estrés Oxidativo/fisiología , Proteínas Protozoarias/genética , Regulación hacia Arriba/genética , Antimonio/farmacología , Antiprotozoarios/farmacología , Línea Celular , Humanos , Peróxido de Hidrógeno/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Estrés Oxidativo/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Trypanosoma rangeli/efectos de los fármacos , Trypanosoma rangeli/genética , Regulación hacia Arriba/efectos de los fármacos
5.
Nucleic Acids Res ; 41(15): 7387-400, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23761445

RESUMEN

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.


Asunto(s)
Anopheles/genética , Genoma de los Insectos , Insectos Vectores/genética , Animales , Anopheles/clasificación , Brasil , Cromosomas de Insectos/genética , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Variación Genética , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Insectos Vectores/clasificación , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/parasitología , Masculino , Anotación de Secuencia Molecular , Filogenia , Sintenía , Transcriptoma
6.
Exp Parasitol ; 130(3): 246-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210157

RESUMEN

Glycoconjugates play essential roles in cell recognition, infectivity and survival of protozoan parasites within their insect vectors and mammalian hosts. ß-galactofuranose is a component of several glycoconjugates in many organisms, including a variety of trypanosomatids, but is absent in mammalian and African trypanosomes. Herein, we describe the presence of a ß(1-3) galactofuranosyl transferase (GALFT), an important enzyme of the galactofuranose biosynthetic pathway, in Trypanosoma rangeli. The T. rangeli GALFT gene (TrGALFT) has an ORF of 1.2 Kb and is organized in two copies in the T. rangeli genome. Antibodies raised against an internal fragment of the transferase demonstrated a 45 kDa protein coded by TrGALFT was localized in the whole cytoplasm, mainly in the Golgi apparatus and equally expressed in epimastigotes and trypomastigotes from T. rangeli. Despite the high sequence similarity with Trypanosoma cruzi and Leishmania spp. orthologous TrGALFT showed a substitution of the metal-binding DXD motif, conserved amongst glycosyltransferases, for a DXE functionally analogous motif. Moreover, a reduced number of GALFT genes were present in T. rangeli when compared with other pathogenic kinetoplastid species.


Asunto(s)
Galactosiltransferasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Trypanosoma rangeli/enzimología , Secuencia de Aminoácidos , Animales , Western Blotting , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Galactosiltransferasas/química , Galactosiltransferasas/genética , Ratones , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Triatominae , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma rangeli/clasificación , Trypanosoma rangeli/genética
7.
Mem Inst Oswaldo Cruz ; 107(6): 713-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22990958

RESUMEN

Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Flagelos/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Trypanosoma rangeli/enzimología , Animales , Inmunización , Ratones , Ratones Endogámicos BALB C , Filogenia , Proteínas Tirosina Fosfatasas/genética , Trypanosoma rangeli/genética , Trypanosoma rangeli/inmunología
8.
Front Genet ; 13: 1020100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36482896

RESUMEN

Assignment of gene function has been a crucial, laborious, and time-consuming step in genomics. Due to a variety of sequencing platforms that generates increasing amounts of data, manual annotation is no longer feasible. Thus, the need for an integrated, automated pipeline allowing the use of experimental data towards validation of in silico prediction of gene function is of utmost relevance. Here, we present a computational workflow named AnnotaPipeline that integrates distinct software and data types on a proteogenomic approach to annotate and validate predicted features in genomic sequences. Based on FASTA (i) nucleotide or (ii) protein sequences or (iii) structural annotation files (GFF3), users can input FASTQ RNA-seq data, MS/MS data from mzXML or similar formats, as the pipeline uses both transcriptomic and proteomic information to corroborate annotations and validate gene prediction, providing transcription and expression evidence for functional annotation. Reannotation of the available Arabidopsis thaliana, Caenorhabditis elegans, Candida albicans, Trypanosoma cruzi, and Trypanosoma rangeli genomes was performed using the AnnotaPipeline, resulting in a higher proportion of annotated proteins and a reduced proportion of hypothetical proteins when compared to the annotations publicly available for these organisms. AnnotaPipeline is a Unix-based pipeline developed using Python and is available at: https://github.com/bioinformatics-ufsc/AnnotaPipeline.

9.
Viruses ; 14(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35458424

RESUMEN

The western mesoregion of the state of Santa Catarina (SC), Southern Brazil, was heavily affected as a whole by the COVID-19 pandemic in early 2021. This study aimed to evaluate the dynamics of the SARS-CoV-2 virus spreading patterns in the SC state from March 2020 to April 2021 using genomic surveillance. During this period, there were 23 distinct variants, including Beta and Gamma, among which the Gamma and related lineages were predominant in the second pandemic wave within SC. A regionalization of P.1-like-II in the Western SC region was observed, concomitant to the increase in cases, mortality, and the case fatality rate (CFR) index. This is the first evidence of the regionalization of the SARS-CoV-2 transmission in SC and it highlights the importance of tracking the variants, dispersion, and impact of SARS-CoV-2 on the public health systems.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , Mutación , Pandemias , Filogenia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
10.
PLoS One ; 16(2): e0246544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539474

RESUMEN

To minimize sample dilution effect on SARS-CoV-2 pool testing, we assessed analytical and diagnostic performance of a new methodology, namely swab pooling. In this method, swabs are pooled at the time of collection, as opposed to pooling of equal volumes from individually collected samples. Paired analysis of pooled and individual samples from 613 patients revealed 94 positive individuals. Having individual testing as reference, no false-positives or false-negatives were observed for swab pooling. In additional 18,922 patients screened with swab pooling (1,344 pools), mean Cq differences between individual and pool samples ranged from 0.1 (Cr.I. -0.98 to 1.17) to 2.09 (Cr.I. 1.24 to 2.94). Overall, 19,535 asymptomatic patients were screened using 4,400 RT-qPCR assays. This corresponds to an increase of 4.4 times in laboratory capacity and a reduction of 77% in required tests. Therefore, swab pooling represents a major alternative for reliable and large-scale screening of SARS-CoV-2 in low prevalence populations.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , Manejo de Especímenes/métodos , COVID-19/virología , Humanos , Tamizaje Masivo/métodos , Nasofaringe/virología , ARN Viral/análisis , ARN Viral/genética , Estudios Retrospectivos , SARS-CoV-2/aislamiento & purificación
11.
Vet Parasitol ; 296: 109495, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34147019

RESUMEN

Human trypanosomiases and animal trypanosomoses are caused by distinct protozoan parasites of the genus Trypanosoma. The etiological agents of bovine trypanosomosis (BT) are T. vivax, T. congolense, or T. brucei, whose acute infections are initially characterized by hyperthermia, following moderate to severe anemia, subcutaneous edema, lethargy, reduced milk production, progressive weight loss, enlarged lymph nodes, reproductive disorders and death. Animals that survive the acute phase might recover and progress to the chronic, often asymptomatic, phase of infection. Despite their low sensitivity due to the characteristic low parasitemia, simple and costless direct parasitological examinations are the preferred diagnostic methods for animals. Thus, most of the epidemiological studies of BT are based on serological techniques using crude antigen. In this study, we describe the use of the MyxoTLm recombinant protein as an antigen on serological assays. Anti-T. vivax IgM and anti-T. vivax IgG ELISA assays using purified MyxoTLm revealed specificity rates of 91.30 % and 95.65 % and sensitivity rates of 82.35 % and 88.23 %, respectively, being higher than reported for crude antigens. Also, MyxoTLm demonstrated a good performance to detect IgM (ROC curve area = 0.8568) and excellent performance to detect IgG (ROC curve area = 0.9565) when compared to a crude antigen. T. evansi crude antigen used in the indirect anti-T. vivax IgM ELISA reached 70.58 % sensitivity and 78.26 % specificity, and had a lower test performance (ROC curve area = 0.7363). When applied to the anti-T. vivax IgG ELISA, the crude antigen reached 82.35 % sensitivity and 69.56 % specificity, also presenting a low performance with area under the ROC curve of 0.7570. Therefore, the use of MyxoTLm as an antigen on serological diagnosis of BT revealed to increase the sensitivity and the specificity if compared to crude antigens.


Asunto(s)
Antígenos de Protozoos , Enfermedades de los Bovinos , Proteínas Recombinantes , Tripanosomiasis Bovina , Animales , Antígenos de Protozoos/metabolismo , Bovinos , Enfermedades de los Bovinos/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Proteínas Recombinantes/metabolismo , Trypanosoma vivax/inmunología , Tripanosomiasis Bovina/diagnóstico
12.
Sci Total Environ ; 778: 146198, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714813

RESUMEN

Human sewage from Florianopolis (Santa Catarina, Brazil) was analyzed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) from October 2019 until March 2020. Twenty five ml of sewage samples were clarified and viruses concentrated using a glycine buffer method coupled with polyethylene glycol precipitation, and viral RNA extracted using a commercial kit. SARS-CoV-2 RNA was detected by RT-qPCR using oligonucleotides targeting N1, S and two RdRp regions. The results of all positive samples were further confirmed by a different RT-qPCR system in an independent laboratory. S and RdRp amplicons were sequenced to confirm identity with SARS-CoV-2. Genome sequencing was performed using two strategies; a sequence-independent single-primer amplification (SISPA) approach, and by direct metagenomics using Illumina's NGS. SARS-CoV-2 RNA was detected on 27th November 2019 (5.49 ± 0.02 log10 SARS-CoV-2 genome copies (GC) L-1), detection being confirmed by an independent laboratory and genome sequencing analysis. The samples in the subsequent three events were positive by all RT-qPCR assays; these positive results were also confirmed by an independent laboratory. The average load was 5.83 ± 0.12 log10 SARS-CoV-2 GC L-1, ranging from 5.49 ± 0.02 log10 GC L-1 (27th November 2019) to 6.68 ± 0.02 log10 GC L-1 (4th March 2020). Our findings demonstrate that SARS-CoV-2 was likely circulating undetected in the community in Brazil since November 2019, earlier than the first reported case in the Americas (21st January 2020).


Asunto(s)
COVID-19 , ARN Viral , Brasil , Humanos , SARS-CoV-2 , Aguas del Alcantarillado
13.
Front Microbiol ; 12: 711471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484149

RESUMEN

Hospital-built environment colonization by healthcare-associated infections-related bacteria (HAIrB) and the interaction with their occupants have been studied to support more effective tools for HAI control. To investigate HAIrB dynamics and antimicrobial resistance (AMR) profile we carried out a 6-month surveillance program in a developing country public hospital, targeting patients, hospital environment, and healthcare workers, using culture-dependent and culture-independent 16S rRNA gene sequencing methods. The bacterial abundance in both approaches shows that the HAIrB group has important representativeness, with the taxa Enterobacteriaceae, Pseudomonas, Staphylococcus, E. coli, and A. baumannii widely dispersed and abundant over the time at the five different hospital units included in the survey. We observed a high abundance of HAIrB in the patient rectum, hands, and nasal sites. In the healthcare workers, the HAIrB distribution was similar for the hands, protective clothing, and mobile phones. In the hospital environment, the healthcare workers resting areas, bathrooms, and bed equipment presented a wide distribution of HAIrB and AMR, being classified as contamination hotspots. AMR is highest in patients, followed by the environment and healthcare workers. The most frequently detected beta-lactamases genes were, bla SHV-like, bla OXA- 23 -like, bla OXA- 51 -like, bla KPC-like, bla CTX-M- 1, bla CTX-M- 8, and bla CTX-M- 9 groups. Our results demonstrate that there is a wide spread of antimicrobial resistance due to HAIrB in the hospital environment, circulating among patients and healthcare workers. The contamination hotspots identified proved to be constant over time. In the fight for patient safety, these findings can reorient practices and help to set up new guidelines for HAI control.

14.
Diagn Microbiol Infect Dis ; 60(1): 25-32, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17889480

RESUMEN

During March 2005, 24 cases of acute human Chagas disease were detected in Santa Catarina State, southern Brazil, all of them related to the ingestion of Trypanosoma cruzi-contaminated sugar cane juice. Following field studies allowed the isolation of 13 T. cruzi strains from humans, opossums (Didelphis aurita and Didelphis albiventris), and vectors (Triatoma tibiamaculata). The isolated strains were characterized by multilocus enzyme electrophoresis (MLEE) and analysis of the spliced-leader and 24Salpha rRNA genes. The assays revealed that all strains isolated from humans belong to the TcII group but revealed a TcII variant pattern for the phosphoglucomutase enzyme. Strains isolated from opossums also showed a TcI profile in all analysis, but strains isolated from triatomines revealed a mixed TcI/TcII profile by MLEE. No indication of the presence of Trypanosoma rangeli was observed in any assay. Considering that mixed strains (TcI/TcII) were isolated from triatomines in an area without active vectorial transmission to humans and that all strains isolated from humans belong to the TcII group, our results show that T. cruzi TcI and TcII groups are circulating among reservoirs and vectors in southern Brazil and indicate that selection toward TcII group in humans may occur after ingestion of a mixed (TcI/TcII) T. cruzi population.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Brotes de Enfermedades , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación , Animales , Brasil/epidemiología , Reservorios de Enfermedades/parasitología , Vectores de Enfermedades , Electroforesis en Gel de Almidón , Enzimas/análisis , Genes de ARNr , Humanos , Epidemiología Molecular , Zarigüeyas/parasitología , Proteínas Protozoarias/análisis , Triatoma/parasitología , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética
15.
Evol Bioinform Online ; 12: 263-275, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27840574

RESUMEN

Kinetoplastids are an ancestral group of protists that contains free-living species and parasites with distinct mechanisms in response to stress. Here, we compared genes involved in antioxidant defense (AD), proposing an evolution model among trypanosomatids. All genes were identified in Bodo saltans, suggesting that AD mechanisms have evolved prior to adaptation for parasitic lifestyles. While most of the monoxenous and dixenous parasites revealed minor differences from B. saltans, the endosymbiont-bearing species have an increased number of genes. The absence of these genes was mainly observed in the extracellular parasites of the genera Phytomonas and Trypanosoma. In trypanosomes, a distinction was observed between stercorarian and salivarian parasites, except for Trypanosoma rangeli. Our analyses indicate that the variability of AD among trypanosomatids at the genomic level is not solely due to the geographical isolation, being mainly related to specific adaptations of their distinct biological cycles within insect vectors and to a parasitism of a wide range of hosts.

16.
Int J Parasitol ; 45(4): 225-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25592964

RESUMEN

Assessment of the genetic variability and population structure of Trypanosoma rangeli, a non-pathogenic American trypanosome, was carried out through microsatellite and single-nucleotide polymorphism analyses. Two approaches were used for microsatellite typing: data mining in expressed sequence tag /open reading frame expressed sequence tags libraries and PCR-based Isolation of Microsatellite Arrays from genomic libraries. All microsatellites found were evaluated for their abundance, frequency and usefulness as markers. Genotyping of T. rangeli strains and clones was performed for 18 loci amplified by PCR from expressed sequence tag/open reading frame expressed sequence tags libraries. The presence of single-nucleotide polymorphisms in the nuclear, multi-copy, spliced leader gene was assessed in 18 T. rangeli strains, and the results show that T. rangeli has a predominantly clonal population structure, allowing a robust phylogenetic analysis. Microsatellite typing revealed a subdivision of the KP1(-) genetic group, which may be influenced by geographical location and/or by the co-evolution of parasite and vectors occurring within the same geographical areas. The hypothesis of parasite-vector co-evolution was corroborated by single-nucleotide polymorphism analysis of the spliced leader gene. Taken together, the results suggest three T. rangeli groups: (i) the T. rangeli Amazonian group; (ii) the T. rangeli KP1(-) group; and (iii) the T. rangeli KP1(+) group. The latter two groups possibly evolved from the Amazonian group to produce KP1(+) and KP1(-) strains.


Asunto(s)
Evolución Molecular , Variación Genética , Trypanosoma rangeli/clasificación , Trypanosoma rangeli/genética , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , Etiquetas de Secuencia Expresada , Genotipo , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
17.
Infect Genet Evol ; 3(1): 39-45, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12797971

RESUMEN

Trypanosoma rangeli are kinetoplastid protozoa which have been largely recognized and defined in several Latin American countries in relation to T. cruzi, because the two trypanosome species are frequently found in mixed infections in triatominae vectors, humans and a variety of wild and domestic mammals. We report the molecular characterization of 18 T. rangeli strains isolated from the salivary glands of naturally infected Rhodnius colombiensis, R. pallescens and R. prolixus by using two independent set of molecular markers. kDNA and mini-exon amplification indicated dimorphism within both DNA sequences: KP1, KP2 and KP3 or KP2 and KP3 products for kDNA mini-circles and 380 or 340bp products for the mini-exon. One of two associations was observed within individual strains: KP1, KP2 and KP3 kDNA products with the 340bp mini-exon product and the KP2 and KP3 kDNA products with the 380bp mini-exon product. Independent mitochondrial and nuclear molecular markers showed a clear division of T. rangeli into two major phylogenetic groups associated with specific vectors in Colombia and in other Latin America countries. These results support either clonal evolution or speciation in T. rangeli populations, probably derived as a secondary adaptation to their parasitic condition in triatomine vectors.


Asunto(s)
ADN de Cinetoplasto/genética , ADN Protozoario/genética , Evolución Molecular , Exones/genética , Genes Protozoarios , Rhodnius/parasitología , Trypanosoma/genética , Animales , Clonación Molecular , Colombia , ADN Mitocondrial/genética , Marcadores Genéticos , Variación Genética , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores/genética , Rhodnius/clasificación , Glándulas Salivales/parasitología , Análisis de Secuencia de ADN , Especificidad de la Especie , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación
18.
Kinetoplastid Biol Dis ; 3(1): 1, 2004 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15142279

RESUMEN

Trypanosoma rangeli is an important hemoflagellate parasite of several mammalian species in Central and South America, sharing geographical areas, vectors and reservoirs with T. cruzi, the causative agent of Chagas disease. Thus, the occurrence of single and/or mixed infections, including in humans, must be expected and are of great importance for specific diagnosis and epidemiology. In comparison to several Trypanosomatidae species, the T. rangeli biology and genome are little known, reinforcing the needs of a gene discovery initiative. The T. rangeli transcriptome initiative aims to promote gene discovery through the generation of expressed sequence tags (ESTs) and Orestes (ORF ESTs) from both epimastigote and trypomastigote forms of the parasite, allowing further studies of the parasite biology, taxonomy and phylogeny.

19.
Rev Soc Bras Med Trop ; 36(5): 609-12, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14576876

RESUMEN

We report the first case of digestive tract pathology (megaesophagus) determined by Trypanosoma cruzi infection in Santa Catarina State, southern Brazil. A 63-year-old female had presumptive clinical diagnosis of Chagas' disease, which was confirmed by imaging (endoscopy and esophagogram) and immunological methods. Further molecular diagnosis was carried out with esophagus and blood samples collected during corrective surgery. Polymerase chain reaction tested positive for Trypanosoma cruzi in both esophagus and buffy coat samples.


Asunto(s)
Enfermedad de Chagas/diagnóstico , Acalasia del Esófago/parasitología , Trypanosoma cruzi , Animales , ADN Protozoario/análisis , Acalasia del Esófago/diagnóstico , Femenino , Humanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
20.
Parasit Vectors ; 7: 197, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24761813

RESUMEN

BACKGROUND: Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress. METHODS: We cloned and characterised genes coding for a cystathionine ß-synthase (CßS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli. RESULTS: Our results show that T. rangeli CßS (TrCßS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CßS. Moreover, CßS biochemical assays revealed that the T. rangeli CßS enzyme also has serine sulfhydrylase activity. CONCLUSION: These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite.


Asunto(s)
Cisteína/biosíntesis , Trypanosoma rangeli/enzimología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Estrés Oxidativo , Fosfatidiletanolaminas , Especificidad de la Especie , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA