Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 134: 104667, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31682993

RESUMEN

The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or ß-subunits of the lysosomal ß-Hexosaminidase enzyme. In physiological conditions, α- and ß-subunits combine to generate ß-Hexosaminidase A (HexA, αß) and ß-Hexosaminidase B (HexB, ßß). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and ß-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and ß-subunits, leading to supranormal levels of ß-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of ß-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or ß-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.


Asunto(s)
Gangliosidosis GM2/metabolismo , Terapia Genética/métodos , Células Madre Hematopoyéticas/metabolismo , Células-Madre Neurales/metabolismo , Cadena alfa de beta-Hexosaminidasa/metabolismo , Cadena beta de beta-Hexosaminidasa/metabolismo , Animales , Gangliosidosis GM2/genética , Vectores Genéticos , Humanos , Lentivirus , Ratones , Cadena alfa de beta-Hexosaminidasa/genética , Cadena beta de beta-Hexosaminidasa/genética
2.
Br J Cancer ; 121(9): 744-750, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31537908

RESUMEN

BACKGROUND: Trabectedin, in addition to its antiproliferative effect, can modify the tumour microenvironment and this could be synergistic with bevacizumab. The efficacy and safety of trabectedin and bevacizumab ± carboplatin have never been investigated. METHODS: In this phase 2 study, women progressing between 6 and 12 months since their last platinum-based therapy were randomised to Arm BT: bevacizumab, trabectedin every 21 days, or Arm BT+C: bevacizumab, trabectedin and carboplatin every 28 days, from cycles 1 to 6, then trabectedin and bevacizumab as in Arm BT. Primary endpoints were progression-free survival rate (PFS-6) and severe toxicity rate (ST-6) at 6 months, assuming a PFS-6 ≤35% for BT and ≤40% for BT+C as not of therapeutic interest and, for both arms, a ST-6 ≥ 30% as unacceptable. RESULTS: BT+C (21 patients) did not meet the safety criteria for the second stage (ST-6 45%; 95%CI: 23%-69%) but PFS-6 was 85% (95%CI: 62%-97%). BT (50 patients) had 75% PFS-6 (95%CI: 60%-87%) and 16% ST-6 (95%CI 7%-30%). CONCLUSIONS: BT compared favourably with other platinum- and non-platinum-based regimens. The combination with carboplatin needs to be assessed further in a re-modulated safer schedule to confirm its apparent strong activity. CLINICAL TRIAL REGISTRATION: NCT01735071 (Clinicaltrials.gov).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/administración & dosificación , Bevacizumab/efectos adversos , Carboplatino/administración & dosificación , Carboplatino/efectos adversos , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Supervivencia sin Progresión , Tasa de Supervivencia , Trabectedina/administración & dosificación , Trabectedina/efectos adversos
3.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261761

RESUMEN

This work explores for the first time the potential contribution of microRNAs (miRNAs) to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD) and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone (SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively, in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid metabolism, CNS development and homeostasis, and neuropathological processes, highlighting region- and disease-specific profiles of miRNA expression. Moreover, by using a computational analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases. These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the aim of developing effective treatments.


Asunto(s)
Cuerpo Estriado/metabolismo , Gangliosidosis GM2/genética , Redes Reguladoras de Genes , Ventrículos Laterales/metabolismo , MicroARNs/genética , Transcriptoma , Animales , Gangliosidosis GM2/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética
4.
Hum Mol Genet ; 25(23): 5198-5211, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742778

RESUMEN

Among the X-linked genes associated with intellectual disability, Oligophrenin-1 (OPHN1) encodes for a Rho GTPase-activating protein, a key regulator of several developmental processes, such as dendrite and spine formation and synaptic activity. Inhibitory interneurons play a key role in the development and function of neuronal circuits. Whether a mutation of OPHN1 can affect morphology and synaptic properties of inhibitory interneurons remains poorly understood. To address these open questions, we studied in a well-established mouse model of X-linked intellectual disability, i.e. a line of mice carrying a null mutation of OPHN1, the development and function of adult generated inhibitory interneurons in the olfactory bulb. Combining quantitative morphological analysis and electrophysiological recordings we found that the adult generated inhibitory interneurons were dramatically reduced in number and exhibited a higher proportion of filopodia-like spines, with the consequences on their synaptic function, in OPHN1 ko mice. Furthermore, we found that olfactory behaviour was perturbed in OPHN1 ko mice. Chronic treatment with a Rho kinase inhibitor rescued most of the defects of the newly generated neurons. Altogether, our data indicated that OPHN1 plays a key role in regulating the number, morphology and function of adult-born inhibitory interneurons and contributed to identify potential therapeutic targets.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas Activadoras de GTPasa/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Animales , Dendritas/efectos de los fármacos , Dendritas/genética , Dendritas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/patología , Interneuronas/efectos de los fármacos , Interneuronas/patología , Ratones Noqueados , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
5.
Hum Mol Genet ; 24(12): 3372-89, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25749991

RESUMEN

Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of ß-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical-pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Galactosilceramidasa/genética , Terapia Genética , Leucodistrofia de Células Globoides/genética , Animales , Apoptosis/genética , Axones/metabolismo , Axones/patología , Trasplante de Médula Ósea , Encéfalo/metabolismo , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Activación Enzimática , Galactosilceramidasa/metabolismo , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Supervivencia de Injerto , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/mortalidad , Leucodistrofia de Células Globoides/terapia , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiopatología , Trasplante de Células Madre
6.
Hum Mol Genet ; 23(12): 3250-68, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463623

RESUMEN

Globoid cell leukodystrophy (GLD) is an inherited lysosomal storage disease caused by ß-galactocerebrosidase (GALC) deficiency. Gene therapy (GT) should provide rapid, extensive and lifetime GALC supply in central nervous system (CNS) tissues to prevent or halt irreversible neurologic progression. Here we used a lentiviral vector (LV) to transfer a functional GALC gene in the brain of Twitcher mice, a severe GLD model. A single injection of LV.GALC in the external capsule of Twitcher neonates resulted in robust transduction of neural cells with minimal and transient activation of inflammatory and immune response. Importantly, we documented a proficient transduction of proliferating and post-mitotic oligodendroglia, a relevant target cell type in GLD. GALC activity (30-50% of physiological levels) was restored in the whole CNS of treated mice as early as 8 days post-injection. The early and stable enzymatic supply ensured partial clearance of storage and reduction of psychosine levels, translating in amelioration of histopathology and enhanced lifespan. At 6 months post-injection in non-affected mice, LV genome persisted exclusively in the injected region, where transduced cells overexpressed GALC. Integration site analysis in transduced brain tissues showed no aberrant clonal expansion and preferential targeting of neural-specific genes. This study establishes neonatal LV-mediated intracerebral GT as a rapid, effective and safe therapeutic intervention to correct CNS pathology in GLD and provides a strong rationale for its application in this and similar leukodystrophies, alone or in combination with therapies targeting the somatic pathology, with the final aim of providing an effective and timely treatment of these global disorders.


Asunto(s)
Sistema Nervioso Central/patología , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/terapia , beta-Galactosidasa/metabolismo , Animales , Animales Recién Nacidos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Cápsula Externa , Terapia Genética , Vectores Genéticos/uso terapéutico , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/genética , Ratones , Ratones Endogámicos C57BL , Transducción Genética , beta-Galactosidasa/genética
7.
J Neurosci Res ; 94(11): 1304-17, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638612

RESUMEN

Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Leucodistrofia de Células Globoides/terapia , Terapias en Investigación/métodos , Animales , Modelos Animales de Enfermedad , Galactosilceramidasa/deficiencia , Galactosilceramidasa/genética , Humanos
8.
Hum Mol Genet ; 21(21): 4732-50, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859505

RESUMEN

We report a novel role for the lysosomal galactosylceramidase (GALC), which is defective in globoid cell leukodystrophy (GLD), in maintaining a functional post-natal subventricular zone (SVZ) neurogenic niche. We show that proliferation/self-renewal of neural stem cells (NSCs) and survival of their neuronal and oligodendroglial progeny are impaired in GALC-deficient mice. Using drugs to modulate inflammation and gene transfer to rescue GALC expression and activity, we show that lipid accumulation resulting from GALC deficiency acts as a cell-autonomous pathogenic stimulus in enzyme-deficient NSCs and progeny before upregulation of inflammatory markers, which later sustain a non-cell-autonomous dysfunction. Importantly, we provide evidence that supply of functional GALC provided by neonatal intracerebral transplantation of NSCs ameliorates the functional impairment in endogenous SVZ cells. Insights into the mechanism/s underlying GALC-mediated regulation of early post-natal neurogenic niches improve our understanding of the multi-component pathology of GLD. The occurrence of a restricted period of SVZ neurogenesis in infancy supports the implications of our study for the development of therapeutic strategies to treat this severe pediatric neurodegenerative disorder.


Asunto(s)
Sistema Nervioso Central , Galactosilceramidasa , Leucodistrofia de Células Globoides , Células-Madre Neurales , Animales , Proliferación Celular , Trasplante de Células , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/crecimiento & desarrollo , Niño , Modelos Animales de Enfermedad , Galactosilceramidasa/deficiencia , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/enzimología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/enzimología , Oligodendroglía/metabolismo
9.
Anal Chem ; 86(1): 473-81, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24294900

RESUMEN

Here, we present the design and validation of a new assay for the diagnosis of metachromatic leukodystrophy. The method is highly specific, simple, reproducible, and straightforward. In our spectrophotometric method, the determination of arylsulfatase A (ARSA) activity toward the natural substrate, galactosyl-3-sulfate ceramide (or sulfatide), is performed using neat sulfatide without chemical modification. This confers to the assay high analytical specificity. The hydrolyzed sulfatide is monitored upon inclusion of the colorimetric reagent Azure A. The nonhydrolyzed sulfatide-Azure A is recovered and measured at a wavelength of λ = 650 nm. Thus, ARSA activity toward the sulfatide is obtained by subtracting the nonhydrolyzed sulfatide from the total sulfatide used in the enzyme reaction (sulfatide-Azure A present in a parallel assay performed in the absence of ARSA). Within a clinical context, our method definitely discriminated between healthy subject samples and metachromatic leukodystrophy patient samples, and, therefore, it is suitable for diagnostic applications and for monitoring the efficacy of therapeutic treatments in patients or animal models.


Asunto(s)
Cerebrósido Sulfatasa/análisis , Cerebrósido Sulfatasa/metabolismo , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/enzimología , Sulfoglicoesfingolípidos/química , Animales , Bovinos , Colorimetría/métodos , Activación Enzimática/fisiología , Humanos , Ratones , Espectrofotometría/métodos
10.
J Gene Med ; 16(11-12): 364-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25394283

RESUMEN

BACKGROUND: Most leukodystrophies result from mutations in genes expressed in oligodendrocytes that may cause autonomous loss of function of cell structural proteins. Therefore, effective gene delivery to oligodendrocytes is necessary to develop future treatments. MATERIALS: To achieve this, we cloned a lentiviral vector in which the enhanced green fluorescent protein (EGFP) expression was driven by the oligodendrocyte specific 2,3-cyclic nucleotide 3-phosphodiesterase promoter. The vector was inserted into C57BL/6 neonatal mouse brain by combined intraventricular and parenchymal injections. RESULTS: Assessment of EGFP expression revealed a widespread distribution, specifically in cells of the oligodendrocyte linage, starting from postnatal day 6 (P6) in the subventricular zone and spreading through migrating oligodendrocyte precursors. By P30, it was detectable throughout the brain and persisted for at least 3 months, showing an increase both in the number of expressing cells and in intensity over time. EGFP expression was restricted to oligodendrocyte linage cells. On average, 20.3 ± 2.56% of all oligodendrocytes in different central nervous system areas were EGFP-positive, with regional variations. CONCLUSIONS: Lentiviral gene delivery using an oligodendrocyte-specific promoter may achieve widespread and long-lasting expression selectively in oligodendrocytes, offering a possibility for gene therapy in certain leukodystrophies, although the relatively low rates of oligodendrocyte transduction are a limitation that remains to be overcome.


Asunto(s)
Terapia Genética , Lentivirus/genética , Oligodendroglía/metabolismo , Animales , Encéfalo/metabolismo , Técnicas de Cocultivo , Femenino , Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones Endogámicos C57BL , Células PC12 , Ratas , Nervio Ciático/metabolismo
11.
Nat Methods ; 8(10): 861-9, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857672

RESUMEN

Integrative gene transfer methods are limited by variable transgene expression and by the consequences of random insertional mutagenesis that confound interpretation in gene-function studies and may cause adverse events in gene therapy. Site-specific integration may overcome these hurdles. Toward this goal, we studied the transcriptional and epigenetic impact of different transgene expression cassettes, targeted by engineered zinc-finger nucleases to the CCR5 and AAVS1 genomic loci of human cells. Analyses performed before and after integration defined features of the locus and cassette design that together allow robust transgene expression without detectable transcriptional perturbation of the targeted locus and its flanking genes in many cell types, including primary human lymphocytes. We thus provide a framework for sustainable gene transfer in AAVS1 that can be used for dependable genetic manipulation, neutral marking of the cell and improved safety of therapeutic applications, and demonstrate its feasibility by rapidly generating human lymphocytes and stem cells carrying targeted and benign transgene insertions.


Asunto(s)
Técnicas de Transferencia de Gen , Mutagénesis Insercional/genética , Mutagénesis Sitio-Dirigida , Dependovirus/genética , Humanos , Receptores CCR5/genética , Integración Viral/genética
12.
Hum Mol Genet ; 19(11): 2208-27, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20203170

RESUMEN

Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.


Asunto(s)
Sistema Nervioso Central/enzimología , Terapia Genética/métodos , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia Metacromática/enzimología , Animales , Transporte Axonal/fisiología , Disponibilidad Biológica , Western Blotting , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Cerebrósido Sulfatasa/farmacocinética , Cromatografía en Gel , Cartilla de ADN/genética , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Galactosilceramidasa/farmacocinética , Vectores Genéticos/administración & dosificación , Inmunohistoquímica , Lentivirus , Leucodistrofia de Células Globoides/terapia , Leucodistrofia Metacromática/terapia , Ratones , Ratones Noqueados , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Stem Cells ; 29(10): 1559-71, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21809420

RESUMEN

Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of ß-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit.


Asunto(s)
Encéfalo/enzimología , Galactosilceramidasa/metabolismo , Terapia Genética/métodos , Leucodistrofia de Células Globoides/terapia , Células-Madre Neurales/trasplante , Médula Espinal/enzimología , Animales , Encéfalo/patología , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Galactosilceramidasa/genética , Galactosilceramidasa/uso terapéutico , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/patología , Trasplante de Células Madre , Transgenes
14.
Neurochem Res ; 37(6): 1344-54, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22350518

RESUMEN

The activities of plasma membrane associated sialidase Neu3, total ß-glucosidase, CBE-sensitive ß-glucosidase, non-lysosomal ß-glucosyl ceramidase GBA2, ß-galactosidase, ß-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive ß-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive ß-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.


Asunto(s)
Astrocitos/enzimología , Diferenciación Celular/fisiología , Membrana Celular/enzimología , Glicósido Hidrolasas/metabolismo , Células-Madre Neurales/enzimología , Neuronas/enzimología , Oligodendroglía/enzimología , Animales , Glucosilceramidasa/metabolismo , Ratones , Neuraminidasa/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , beta-Galactosidasa/metabolismo , beta-Glucosidasa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
15.
Methods Mol Biol ; 2389: 11-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34557998

RESUMEN

Due to the complexity of the neural stem cell (NSC) niche organization, the lack of specific NSC markers, and the difficulty of long-term tracking these cells and their progeny in vivo, the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the postnatal and adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular , Separación Celular , Células Cultivadas , Prosencéfalo , Nicho de Células Madre
16.
Methods Cell Biol ; 171: 229-245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953203

RESUMEN

For a long time, the understanding of neurological diseases has been limited by the lack of representative experimental models able to recapitulate essential features of the human pathologies. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for disease modeling, drug screening, and the development of novel cell and gene therapies. A critical issue for the prospective use of hiPSCs in basic and translational research for central nervous system (CNS) disorders is to validate robust protocols able to efficiently differentiate pluripotent cells into neurons and glial cells of interest, specifically those that are most affected in pathological conditions. We describe here a three-step differentiation protocol optimized for feeder-free hiPSCs. The protocol includes a first step of neural induction mediated by dual SMAD inhibition to generate homogeneous populations of neural progenitor cells (NPCs), a second step of NPCs expansion, and a third phase of NPCs differentiation into a mixed culture of neurons, oligodendrocytes, and astrocytes. This experimental platform is relevant to recapitulate the neural induction of hiPSCs and to monitor NPC lineage specification and neuronal/glial differentiation in physiological conditions as well as in the context of CNS diseases. The protocol allows monitoring early pathological hallmarks in the different CNS cell types, also offering a simplified in vitro model to study the neuronal-glial crosstalk.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Diferenciación Celular/genética , Humanos , Neuronas/metabolismo , Oligodendroglía
17.
Methods Cell Biol ; 171: 127-147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953197

RESUMEN

Human neural stem cells (hNSCs) hold great promises for the development of cell-based therapies for neurodegenerative diseases, given their capability to provide immunomodulatory and trophic support and to replace, to a limited extent, damaged, or lost cells. Human NSCs are under clinical evaluation for the treatment of several neurodegenerative diseases. Still, issues related to the large-scale production of clinical-grade fetal hNSCs and their allogeneic nature-requiring immunosuppressive regimens-have hampered their full exploitation as therapeutics. NSCs derived from human induced pluripotent stem cells (hiPSCs) provide a valuable alternative to fetal hNSCs since they can be generated from autologous or HLA-matched donors expanded for large-scale clinical-grade production, and are amenable for gene addition/gene editing strategies, thus potentially addressing CNS diseases of genetic origin. The prospective use of hiPSC-derived NSCs (hiPSC-NSCs) for CNS-directed therapies demands a careful evaluation of the efficacy and safety of these cell populations in animal models. Here, we describe a protocol for the transplantation and phenotypical characterization of hiPSC-NSCs in neonatal immunodeficient mice. This protocol is relevant to assessing the safety and the efficacy of hiPSC-NSC transplantation to target early-onset neurodegenerative or demyelinating CNS diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Animales , Animales Recién Nacidos , Diferenciación Celular , Edición Génica , Humanos , Ratones
18.
Mol Ther Methods Clin Dev ; 25: 170-189, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35434178

RESUMEN

Genetic deficiency of ß-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.

19.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35262626

RESUMEN

Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Astrocitos/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Daño del ADN , Humanos , Inflamación/genética , Inflamación/metabolismo , Malformaciones del Sistema Nervioso/genética
20.
Front Med (Lausanne) ; 8: 774618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118085

RESUMEN

In vivo genetic engineering has recently shown remarkable potential as a novel effective treatment for an ever-growing number of diseases, as also witnessed by the recent marketing authorization of several in vivo gene therapy products. In vivo genetic engineering comprises both viral vector-mediated gene transfer and the more recently developed genome/epigenome editing strategies, as long as they are directly administered to patients. Here we first review the most advanced in vivo gene therapies that are commercially available or in clinical development. We then highlight the major challenges to be overcome to fully and broadly exploit in vivo gene therapies as novel medicines, discussing some of the approaches that are being taken to address them, with a focus on the nervous system and liver taken as paradigmatic examples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA