Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 115(6): 110723, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804957

RESUMEN

Allopolyploids often experience subgenome dominance, with one subgenome showing higher levels of gene expression and greater gene retention. Here, we address the functionality of both subgenomes of allotetraploid common carp (Cyprinus carpio) by analysing a functional network of interferon-stimulated genes (ISGs) crucial in anti-viral immune defence. As an indicator of subgenome dominance we investigated retainment of a core set of ohnologous ISGs. To facilitate our functional genomic analysis a high quality genome was assembled (WagV4.0). Transcriptome data from an in vitro experiment mimicking a viral infection was used to infer ISG expression. Transcriptome analysis confirmed induction of 88 ISG ohnologs on both subgenomes. In both control and infected states, average expression of ISG ohnologs was comparable between the two subgenomes. Also, the highest expressing and most inducible gene copies of an ohnolog pair could be derived from either subgenome. We found no strong evidence of subgenome dominance for common carp.


Asunto(s)
Carpas , Genoma de Planta , Animales , Humanos , Tetraploidía , Carpas/genética , Duplicación de Gen , Perfilación de la Expresión Génica
2.
BMC Genomics ; 24(1): 208, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072725

RESUMEN

BACKGROUND: De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. RESULTS: We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038-0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. CONCLUSIONS: Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.


Asunto(s)
Células Germinativas , Mutación de Línea Germinal , Animales , Porcinos/genética , Mutación , Secuenciación Completa del Genoma , Haplotipos
3.
Anim Genet ; 52(4): 514-517, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33955556

RESUMEN

The pig breeding system provides a unique framework to study recessive defects and the consequence on the phenotype. We examined a commercial synthetic Duroc population for recessive defects and identified a haplotype on chromosome 9 significantly affecting pre-weaning mortality. To identify the causal variant underlying the mortality, we examined sequence data of four carrier animals and 21 non-carrier animals from the same population. The results yield a strong candidate causal stop-gained variant (NM_001099928.1:c.541C>T) affecting the MYO7A gene in complete linkage disequilibrium with the lethal haplotype. The variant leads to an impaired (p.Gln181*) MYO7A protein that truncates 2032 amino acids from the protein. We examined a litter from a carrier sow inseminated by a carrier boar. From the resulting piglets, two confirmed homozygous piglets suffered from severe balance difficulties and the inability to walk properly. The variant segregates at a carrier frequency of 8.2% in the evaluated population and will be gradually purged from the population, improving animal welfare. Finally, this 'natural knockout' will increase our understanding of the functioning of the MYO7A gene and provides a potential model for Usher syndrome in humans.


Asunto(s)
Longevidad/genética , Miosina VIIa/deficiencia , Sus scrofa/fisiología , Animales , Sus scrofa/genética , Destete
4.
Anim Genet ; 49(1): 59-70, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29344947

RESUMEN

Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium-density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO ) and expected (HE ) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub-structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within-breed diversity and heterozygote advantage in crossbreeding schemes.


Asunto(s)
Cabras/genética , Polimorfismo de Nucleótido Simple , Animales , Genética de Población , Estudio de Asociación del Genoma Completo , Cabras/clasificación , Uganda
6.
Heredity (Edinb) ; 118(2): 169-176, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27677498

RESUMEN

The domestication of taurine cattle initiated ~10 000 years ago in the Near East from a wild aurochs (Bos primigenius) population followed by their dispersal through migration of agriculturalists to Europe. Although gene flow from wild aurochs still present at the time of this early dispersion is still debated, some of the extant primitive cattle populations are believed to possess the aurochs-like primitive features. In this study, we use genome-wide single nucleotide polymorphisms to assess relationship, admixture patterns and demographic history of an ancient aurochs sample and European cattle populations, several of which have primitive features and are suitable for extensive management. The principal component analysis, the model-based clustering and a distance-based network analysis support previous works suggesting different histories for north-western and southern European cattle. Population admixture analysis indicates a zebu gene flow in the Balkan and Italian Podolic cattle populations. Our analysis supports the previous report of gene flow between British and Irish primitive cattle populations and local aurochs. In addition, we show evidence of aurochs gene flow in the Iberian cattle populations indicating wide geographical distribution of the aurochs. Runs of homozygosity (ROH) reveal that demographic processes like genetic isolation and breed formation have contributed to genomic variations of European cattle populations. The ROH also indicate recent inbreeding in southern European cattle populations. We conclude that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations.


Asunto(s)
Cruzamiento , Bovinos/genética , Flujo Génico , Genética de Población , Animales , Europa (Continente) , Fósiles , Modelos Genéticos , Polimorfismo de Nucleótido Simple
7.
Heredity (Edinb) ; 116(1): 60-7, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26243137

RESUMEN

The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126-0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Animales , Teorema de Bayes , Europa (Continente) , Genotipo , Islas , Italia , Análisis de Componente Principal , Análisis de Secuencia de ADN
8.
J Anim Breed Genet ; 133(3): 167-79, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26776363

RESUMEN

There is an increasing interest in using whole-genome sequence data in genomic selection breeding programmes. Prediction of breeding values is expected to be more accurate when whole-genome sequence is used, because the causal mutations are assumed to be in the data. We performed genomic prediction for the number of eggs in white layers using imputed whole-genome resequence data including ~4.6 million SNPs. The prediction accuracies based on sequence data were compared with the accuracies from the 60 K SNP panel. Predictions were based on genomic best linear unbiased prediction (GBLUP) as well as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy from using different types of variants (synonymous, non-synonymous and non-coding SNPs) was evaluated. Genomic prediction using the 60 K SNP panel resulted in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data, there was a small increase (~1%) in prediction accuracy over the 60 K genotypes. With both 60 K SNP panel and sequence data, GBLUP slightly outperformed BayesC in predicting the breeding values. Selection of SNPs more likely to affect the phenotype (i.e. non-synonymous SNPs) did not improve the accuracy of genomic prediction. The fact that sequence data were based on imputation from a small number of sequenced animals may have limited the potential to improve the prediction accuracy. A small reference population (n = 1004) and possible exclusion of many causal SNPs during quality control can be other possible reasons for limited benefit of sequence data. We expect, however, that the limited improvement is because the 60 K SNP panel was already sufficiently dense to accurately determine the relationships between animals in our data.


Asunto(s)
Pollos/genética , Análisis de Secuencia de ADN/métodos , Animales , Cruzamiento , Femenino , Genoma , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Heredity (Edinb) ; 113(6): 503-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25074573

RESUMEN

Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60 K SNP chip with markers spaced throughout the entire chicken genome, we compared the impact of GS and traditional BLUP (best linear unbiased prediction) selection methods applied side-by-side in three different lines of egg-laying chickens. Differences were demonstrated between methods, both at the level and genomic distribution of allele frequency changes. In all three lines, the average allele frequency changes were larger with GS, 0.056 0.064 and 0.066, compared with BLUP, 0.044, 0.045 and 0.036 for lines B1, B2 and W1, respectively. With BLUP, 35 selected regions (empirical P < 0.05) were identified across the three lines. With GS, 70 selected regions were identified. Empirical thresholds for local allele frequency changes were determined from gene dropping, and differed considerably between GS (0.167-0.198) and BLUP (0.105-0.126). Between lines, the genomic regions with large changes in allele frequencies showed limited overlap. Our results show that GS applies selection pressure much more locally than BLUP, resulting in larger allele frequency changes. With these results, novel insights into the nature of selection on quantitative traits have been gained and important questions regarding the long-term impact of GS are raised. The rapid changes to a part of the genetic architecture, while another part may not be selected, at least in the short term, require careful consideration, especially when selection occurs before phenotypes are observed.


Asunto(s)
Pollos/genética , Frecuencia de los Genes , Variación Genética , Modelos Genéticos , Linaje , Alelos , Animales , Cruzamiento , Femenino , Flujo Genético , Genotipo , Masculino , Fenotipo , Selección Genética
10.
Heredity (Edinb) ; 112(3): 307-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24149651

RESUMEN

Linking variation in quantitative traits to variation in the genome is an important, but challenging task in the study of life-history evolution. Linkage maps provide a valuable tool for the unravelling of such trait-gene associations. Moreover, they give insight into recombination landscapes and between-species karyotype evolution. Here we used genotype data, generated from a 10k single-nucleotide polymorphism (SNP) chip, of over 2000 individuals to produce high-density linkage maps of the great tit (Parus major), a passerine bird that serves as a model species for ecological and evolutionary questions. We created independent maps from two distinct populations: a captive F2-cross from The Netherlands (NL) and a wild population from the United Kingdom (UK). The two maps contained 6554 SNPs in 32 linkage groups, spanning 2010 cM and 1917 cM for the NL and UK populations, respectively, and were similar in size and marker order. Subtle levels of heterochiasmy within and between chromosomes were remarkably consistent between the populations, suggesting that the local departures from sex-equal recombination rates have evolved. This key and surprising result would have been impossible to detect if only one population was mapped. A comparison with zebra finch Taeniopygia guttata, chicken Gallus gallus and the green anole lizard Anolis carolinensis genomes provided further insight into the evolution of avian karyotypes.


Asunto(s)
Genética de Población , Passeriformes/genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , Animales , Pollos/genética , Mapeo Cromosómico , Femenino , Pinzones/genética , Ligamiento Genético , Genoma , Lagartos/genética , Masculino , Países Bajos , Reino Unido
11.
Anim Genet ; 45(6): 874-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25262849

RESUMEN

European pigs that carry Asian haplotypes of a 1.94-Mbp region on pig chromosome 6 have lower levels of androstenone, one of the two main compounds causing boar taint. The objective of our study was to examine potential pleiotropic effects of the Asian low-androstenone haplotypes. A single nucleotide polymorphism marker, rs81308021, distinguishes the Asian from European haplotypes and was used to investigate possible associations of androstenone with production and reproduction traits. Eight traits were available from three European commercial breeds. For the two sow lines studied, a favorable effect on number of teats was detected for the low-androstenone haplotype. In one of these sow lines, a favorable effect on number of spermatozoa per ejaculation was detected for the low-androstenone haplotype. No unfavorable pleiotropic effects were found, which suggests that selection for low-androstenone haplotypes within the 1.94 Mbp would not unfavorably affect the other eight relevant traits.


Asunto(s)
Androstenos/análisis , Haplotipos , Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Animales , Peso al Nacer , Cruzamiento , Femenino , Tamaño de la Camada , Masculino , Fenotipo , Reproducción/genética , Motilidad Espermática , Sus scrofa/clasificación , Sus scrofa/fisiología
12.
Anim Genet ; 45(2): 198-204, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24450499

RESUMEN

Although structural properties of the porcine reproductive system are shared by many placental mammals, some combination of these properties is unique to pigs. To explore whether genomic elements specific to pigs could potentially underlie this uniqueness, we made the first step to identify novel transcripts in two representative pig reproductive tissues by the technique of massively parallel sequencing. To automate the whole process, we built a computational pipeline, which can also be easily extended for similar studies in other species. In total, 5516 and 9061 novel transcripts were found, and 159 and 252 novel transcripts appear to be specific to pigs for the placenta and testis respectively. Furthermore, these novel transcripts were found to be enriched in quantitative trait loci (QTL) regions for reproduction traits in pigs. We validated eight of these novel transcripts by quantitative real-time PCR. With respect to their genomic organization and their functional relationship to reproduction, these transcripts need to be further validated and explored in various pig breeds to better comprehend the relevant aspects of pig physiology that contribute to reproductive performance.


Asunto(s)
Placenta/metabolismo , ARN Mensajero/química , Reproducción/genética , Porcinos/genética , Testículo/metabolismo , Animales , Femenino , Masculino , Embarazo , Sitios de Carácter Cuantitativo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Especificidad de la Especie , Transcriptoma
13.
Mol Ecol ; 22(23): 5835-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118391

RESUMEN

Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST , linkage disequilibrium and a comparison of geneflow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.


Asunto(s)
Migración Animal , Gansos/genética , Flujo Génico , Genética de Población , Animales , Análisis Discriminante , Genotipo , Groenlandia , Desequilibrio de Ligamiento , Modelos Genéticos , Países Bajos , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Federación de Rusia , Svalbard , Suecia
14.
Heredity (Edinb) ; 110(4): 321-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23250008

RESUMEN

The pig, Sus scrofa, is a foreign species to the American continent. Although pigs originally introduced in the Americas should be related to those from the Iberian Peninsula and Canary islands, the phylogeny of current creole pigs that now populate the continent is likely to be very complex. Because of the extreme climates that America harbors, these populations also provide a unique example of a fast evolutionary phenomenon of adaptation. Here, we provide a genome wide study of these issues by genotyping, with a 60k SNP chip, 206 village pigs sampled across 14 countries and 183 pigs from outgroup breeds that are potential founders of the American populations, including wild boar, Iberian, international and Chinese breeds. Results show that American village pigs are primarily of European ancestry, although the observed genetic landscape is that of a complex conglomerate. There was no correlation between genetic and geographical distances, neither continent wide nor when analyzing specific areas. Most populations showed a clear admixed structure where the Iberian pig was not necessarily the main component, illustrating how international breeds, but also Chinese pigs, have contributed to extant genetic composition of American village pigs. We also observe that many genes related to the cardiovascular system show an increased differentiation between altiplano and genetically related pigs living near sea level.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Polimorfismo de Nucleótido Simple/genética , Porcinos/genética , Américas , Animales , Animales Domésticos/genética , Cruzamiento , ADN Mitocondrial/genética , Europa (Continente) , Haplotipos , Humanos , Filogenia , España
15.
Poult Sci ; 91(3): 556-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22334730

RESUMEN

Ascites or pulmonary hypertension syndrome is a metabolic disorder in broilers. Male broilers have a higher BW and are therefore expected to be more prone to developing ascites than females. As genetic parameters might be affected by the ascites incidence, genetic parameters might differ between male and female broilers. The aims of this study were to estimate the heritability for the ratio of right ventricular weight to total ventricular weight (RATIO) and BW in male and female broilers, the genetic correlation between RATIO and BW separately for male and female broilers, and the genetic correlations between BW for ascitic and nonascitic broilers. Data were available from 7,856 broilers (3,819 males and 4,037 females). The broilers in the experiment were kept under a cold temperature regimen and increased CO(2) levels. In this study, we showed that the incidence of ascites is higher in male than in female broilers. Heritability estimates for BW at 7 wk of age were higher for male (0.22) than for female (0.17) broilers, and for RATIO heritability, estimates were higher for female (0.44) than for male (0.32) broilers. The genetic correlations between RATIO and BW measured at different ages changed from slightly positive at 2 wk of age to moderately negative at 7 wk. The change in genetic correlation was more extreme for male (from 0.01 to -0.62) than for female (from 0.13 to -0.24) broilers. The difference in ascites incidence between male and female broilers is the most likely reason for the difference in genetic correlations. The genetic correlation between BW traits measured in broilers with fluid in the abdomen and without fluid in the abdomen decreased from 0.91 at 2 wk to 0.69 at 7 wk. We conclude that under circumstances with ascites, data from male and female broilers should be analyzed separately.


Asunto(s)
Ascitis/veterinaria , Pollos , Ventrículos Cardíacos/fisiopatología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/fisiopatología , Animales , Ascitis/genética , Ascitis/fisiopatología , Peso Corporal/genética , Peso Corporal/fisiología , Femenino , Masculino , Tamaño de los Órganos/fisiología , Carácter Cuantitativo Heredable , Factores Sexuales
16.
Heredity (Edinb) ; 107(3): 256-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21407255

RESUMEN

Despite dramatic reduction in sequencing costs with the advent of next generation sequencing technologies, obtaining a complete mammalian genome sequence at sufficient depth is still costly. An alternative is partial sequencing. Here, we have sequenced a reduced representation library of an Iberian sow from the Guadyerbas strain, a highly inbred strain that has been used in numerous QTL studies because of its extreme phenotypic characteristics. Using the Illumina Genome Analyzer II (San Diego, CA, USA), we resequenced ∼ 1% of the genome with average 4 × depth, identifying 68,778 polymorphisms. Of these, 55,457 were putative fixed differences with respect to the assembly, based on the genome of a Duroc pig, and 13,321 were heterozygous positions within Guadyerbas. Despite being highly inbred, the estimate of heterozygosity within Guadyerbas was ∼ 0.78 kb(-1) in autosomes, after correcting for low depth. Nucleotide variability was consistently higher at the telomeric regions than on the rest of the chromosome, likely a result of increased recombination rates. Further, variability was 50% lower in the X-chromosome than in autosomes, which may be explained by a recent bottleneck or by selection. We divided the whole genome in 500 kb windows and we analyzed overrepresented gene ontology terms in regions of low and high variability. Multi organism process, pigmentation and cell killing were overrepresented in high variability regions and metabolic process ontology, within low variability regions. Further, a genome wide Hudson-Kreitman-Aguadé test was carried out per window; overall, variability was in agreement with neutral expectations.


Asunto(s)
Mapeo Cromosómico/métodos , Análisis de Secuencia de ADN/métodos , Porcinos/genética , Animales , Secuencia de Bases , Femenino , Variación Genética , Genoma , Genómica/métodos , Endogamia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia
17.
Anim Genet ; 42(6): 613-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22035002

RESUMEN

The objectives of this study were to develop breed-specific single nucleotide polymorphisms (SNPs) in five pig breeds sequenced with Illumina's Genome Analyzer and to investigate their usefulness for breed assignment purposes. DNA pools were prepared for Duroc, Landrace, Large White, Pietrain and Wild Boar. The total number of animals used for sequencing was 153. SNP discovery was performed by aligning the filtered reads against Build 7 of the pig genome. A total of 313,964 high confidence SNPs were identified and analysed for the presence of breed-specific SNPs (defined in this context as SNPs for which one of the alleles was detected in only one breed). There were 29,146 putative breed-specific SNPs identified, of which 4441 were included in the PorcineSNP60 beadchip. Upon re-examining the genotypes obtained using the beadchip, 193 SNPs were confirmed as being breed specific. These 193 SNPs were subsequently used to assign an additional 490 individuals from the same breeds, using the sequenced individuals as reference populations. In total, four breed assignment tests were performed. Results showed that for all methods tested 99% of the animals were correctly assigned, with an average probability of assignment of at least 99.2%, indicating the high utility of breed-specific markers for breed assignment and traceability. This study provides a blueprint for the way next-generation sequencing technologies can be used for the identification of breed-specific SNPs, as well as evidence that these SNPs may be a powerful tool for breed assignment and traceability of animal products to their breeds of origin.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Animales , Femenino , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Análisis de Secuencia de ADN
18.
Anim Genet ; 42(2): 125-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21143489

RESUMEN

Understanding the complex origin of domesticated populations is of vital importance for understanding, preserving and exploiting breed genetic diversity. Here, we aim to assess Asian contributions to European traditional breeds and western commercial chickens for mitochondrial genetic diversity. To this end, a 365-bp fragment of the chicken mtDNA D-loop region of 16 Dutch fancy breeds (113 individuals) was surveyed, comprising almost the entire breed diversity of The Netherlands. We also sequenced the same fragment for 160 commercial birds representing all important commercial types from multiple commercial companies that together represent more than 50% of the worldwide commercial value. We identified 20 different haplotypes. The haplotypes clustered into five clades. The commonest clade (E-clade) supposedly originates from the Indian subcontinent. In addition, both in commercial chicken and Dutch fancy breeds, many haplotypes were found with a clear East Asian origin. However, the erratic occurrence of many different East Asian mitochondrial clades indicates that there were many independent instances where breeders used imported exotic chickens for enhancing local breeds. Nucleotide diversity and haplotype diversity analyses showed the influence of the introgression of East Asian chicken on genetic diversity. All populations that had haplotypes of multiple origin displayed high inferred diversity, as opposed to most populations that had only a single mitochondrial haplotype signature. Most fancy breeds were found to have a much lower within-population diversity compared to broilers and layers, although this is not the case for mitochondrial estimates in fancy breeds that have multiple origin haplotypes.


Asunto(s)
Pollos/genética , ADN Mitocondrial/genética , Variación Genética , Animales , Asia Sudoriental , Secuencia de Bases , Cruzamiento , ADN Mitocondrial/química , Europa (Continente) , Femenino , Haplotipos , Masculino , Mitocondrias/genética , Datos de Secuencia Molecular , Países Bajos , Filogenia , Análisis de Secuencia de ADN/veterinaria , Especificidad de la Especie
19.
Cytogenet Genome Res ; 129(4): 310-3, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20606388

RESUMEN

Despite the progress of the chicken (Gallus gallus) genome sequencing project, the centromeric sequences of most macrochromosomes remain unknown. This makes it difficult to determine centromere positions in the genome sequence assembly. Using giant lampbrush chromosomes from growing oocytes, we analyzed in detail the pericentromeric region of chicken chromosome 3. Without knowing the DNA sequence, the centromeres at the lampbrush stage are detectable by immunostaining with antibodies against cohesin subunits. Immunostaining for cohesin followed by FISH with 23 BAC clones, covering the region from 0 to 23 Mb on chicken chromosome 3 (GGA3), allowed us to map the GGA3 centromere between BAC clones WAG38P15 and WAG54M22 located at position 2.3 and 2.5 Mb, respectively. This corresponds to the gap between 2 supercontigs at the 2.4-Mb position in the current GGA3 sequence assembly (build 2.1). Furthermore, we have determined that the current putative centromeric gap at position 11.6-13.1 Mb corresponds in fact to a long cluster of tandem chicken erythrocyte nuclear membrane repeats (CNM).


Asunto(s)
Centrómero , Pollos/genética , Cromosomas , Animales , Hibridación Fluorescente in Situ , Familia de Multigenes , Mapeo Físico de Cromosoma , Secuencias Repetidas en Tándem
20.
Heredity (Edinb) ; 105(3): 290-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20104236

RESUMEN

As all four meiotic products give rise to sperm in males, female meiosis result in a single egg in most eukaryotes. Any genetic element with the potential to influence chromosome segregation, so that it is preferentially included in the egg, should therefore gain a transmission advantage; a process termed female meiotic drive. We are aware of two chromosomal components, centromeres and telomeres, which share the potential to influence chromosome movement during meioses and make the following predictions based on the presence of female meiotic drive: (1) centromere-binding proteins should experience rapid evolution as a result of a conflict between driving centromeres and the rest of the genome; and (2) segregation patterns should be skewed near centromeres and telomeres. To test these predictions, we first analyze the molecular evolution of seven centromere-binding proteins in nine divergent bird species. We find strong evidence for positive selection in two genes, lending support to the genomic conflict hypothesis. Then, to directly test for the presence of segregation distortion, we also investigate the transmission of approximately 9000 single-nucleotide polymorphisms in 197 chicken families. By simulating fair Mendelian meioses, we locate chromosomal regions with statistically significant transmission ratio distortion. One region is located near the centromere on chromosome 1 and a second region is located near the telomere on the p-arm of chromosome 1. Although these observations do not provide conclusive evidence in favour of the meiotic drive/genome conflict hypothesis, they do lend support to the hypothesis that centromeres and telomeres drive during female meioses in chicken.


Asunto(s)
Evolución Biológica , Pollos/genética , Cromosomas de los Mamíferos/genética , Meiosis/fisiología , Animales , Centrómero , Simulación por Computador , Femenino , Marcadores Genéticos , Polimorfismo de Nucleótido Simple/genética , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA