Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Immunol ; 209(8): 1574-1585, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165184

RESUMEN

Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting ß2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced ß2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and ß2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.


Asunto(s)
Antígenos CD18 , Neutrófilos , Animales , Antígenos CD18/metabolismo , Calcio/metabolismo , Adhesión Celular , Guanosina , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Polifosfatos , Proteína de Unión al GTP rac1/metabolismo
2.
J Neurosci ; 41(49): 10034-10053, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34663629

RESUMEN

Traumatic brain injury (TBI) results in disrupted brain function following impact from an external force and is a risk factor for sporadic Alzheimer's disease (AD). Although neurologic symptoms triggered by mild traumatic brain injuries (mTBI), the most common form of TBI, typically resolve rapidly, even an isolated mTBI event can increase the risk to develop AD. Aberrant accumulation of amyloid ß peptide (Aß), a cleaved fragment of amyloid precursor protein (APP), is a key pathologic outcome designating the progression of AD following mTBI and has also been linked to impaired axonal transport. However, relationships among mTBI, amyloidogenesis, and axonal transport remain unclear, in part because of the dearth of human models to study the neuronal response following mTBI. Here, we implemented a custom-microfabricated device to deform neurons derived from human-induced pluripotent stem cells, derived from a cognitively unimpaired male individual, to mimic the mild stretch experienced by neurons during mTBI. Although no cell lethality or cytoskeletal disruptions were observed, mild stretch was sufficient to stimulate rapid amyloidogenic processing of APP. This processing led to abrupt cessation of APP axonal transport and progressive formation of aberrant axonal accumulations that contained APP, its processing machinery, and amyloidogenic fragments. Consistent with this sequence of events, stretch-induced defects were abrogated by reducing amyloidogenesis either pharmacologically or genetically. In sum, we have uncovered a novel and manipulable stretch-induced amyloidogenic pathway directly responsible for APP axonal transport dysregulation. Our findings may help to understand and ultimately mitigate the risk of developing AD following mTBI.SIGNIFICANCE STATEMENT Mild traumatic brain injury is a risk factor for sporadic Alzheimer's disease (AD). Increased amyloid ß peptide generation after injury may drive this risk. Here, by using a custom-built device to impose mild stretch to human neurons, we found that stretch triggers amyloid precursor protein (APP) cleavage, and thus amyloid ß peptide generation, consequently disrupting APP axonal transport. Compellingly, protecting APP from cleavage was sufficient to spare axonal transport dysregulation and the consequent aberrant axonal accumulation of APP. Supporting such protective mechanism, the expression of the AD-protective APPA673T genetic variant conferred protection against stretch-induced APP axonal transport phenotypes. Our data reveal potential subcellular pathways contributing to the development of AD-associated phenotypes following mild traumatic brain injury, and putative strategies for intervening in these pathways.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Alzheimer/etiología , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Técnicas de Cultivo de Célula/métodos , Humanos , Células Madre Pluripotentes Inducidas , Masculino
3.
Mol Syst Biol ; 17(12): e10505, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898015

RESUMEN

Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.


Asunto(s)
Actomiosina , Dictyostelium , Citoesqueleto de Actina , Actinas , Movimiento Celular , Tracción
4.
Hum Mol Genet ; 28(9): 1498-1514, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590647

RESUMEN

Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Variación Genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal , Axones/metabolismo , Caenorhabditis elegans , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Mutación , Fosforilación , Unión Proteica , Vesículas Sinápticas/metabolismo , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/patología
5.
Biophys J ; 118(11): 2816-2828, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32348719

RESUMEN

Bacterial chemotaxis, the directed migration of bacteria in a gradient of chemoattractant, is one of the most well-studied and well-understood processes in cell biology. On the other hand, bacterial thermotaxis, the directed migration of bacteria in a gradient of temperature, is understood relatively poorly, with somewhat conflicting reports by different groups. One of the reasons for that is the relative technical difficulty of the generation of well-defined gradients of temperature that are sufficiently steep to elicit readily detectable thermotaxis. Here, we used a specially designed microfluidic device to study thermotaxis of Escherichia coli in a broad range of thermal gradients with a high rate of data collection. We found that in shallow temperature gradients with narrow temperature ranges, E. coli tended to aggregate near a sidewall of the gradient channel at either the lowest or the highest temperature. On the other hand, in sufficiently steep gradients with wide temperature ranges, E. coli aggregated at intermediate temperatures, with maximal cell concentrations found away from the sidewalls. We observed this intermediate temperature aggregation in a motility buffer that did not contain any major chemoattractants of E. coli, in contradiction to some previous reports, which suggested that this type of aggregation required the presence of at least one major chemoattractant in the medium. Even more surprisingly, the aggregation temperature strongly depended on the gradient steepness, decreasing by ∼10° as the steepness was increased from 27 to 53°C/mm. Our experiments also highlight the fact that assessments of thermal gradients by changes in fluorescence of temperature-sensitive fluorescent dyes need to account for thermophoresis of the dyes.


Asunto(s)
Escherichia coli , Taxia , Quimiotaxis , Dispositivos Laboratorio en un Chip , Temperatura
6.
Proc Natl Acad Sci U S A ; 114(20): 5195-5200, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28465431

RESUMEN

The intermediate filament vimentin is required for cells to transition from the epithelial state to the mesenchymal state and migrate as single cells; however, little is known about the specific role of vimentin in the regulation of mesenchymal migration. Vimentin is known to have a significantly greater ability to resist stress without breaking in vitro compared with actin or microtubules, and also to increase cell elasticity in vivo. Therefore, we hypothesized that the presence of vimentin could support the anisotropic mechanical strain of single-cell migration. To study this, we fluorescently labeled vimentin with an mEmerald tag using TALEN genome editing. We observed vimentin architecture in migrating human foreskin fibroblasts and found that network organization varied from long, linear bundles, or "fibers," to shorter fragments with a mesh-like organization. We developed image analysis tools employing steerable filtering and iterative graph matching to characterize the fibers embedded in the surrounding mesh. Vimentin fibers were aligned with fibroblast branching and migration direction. The presence of the vimentin network was correlated with 10-fold slower local actin retrograde flow rates, as well as spatial homogenization of actin-based forces transmitted to the substrate. Vimentin fibers coaligned with and were required for the anisotropic orientation of traction stresses. These results indicate that the vimentin network acts as a load-bearing superstructure capable of integrating and reorienting actin-based forces. We propose that vimentin's role in cell motility is to govern the alignment of traction stresses that permit single-cell migration.


Asunto(s)
Vimentina/química , Vimentina/fisiología , Actinas/química , Animales , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Elasticidad , Transición Epitelial-Mesenquimal/fisiología , Fibroblastos/química , Humanos , Filamentos Intermedios/química , Filamentos Intermedios/fisiología , Fenómenos Mecánicos , Microtúbulos/química , Fibras de Estrés/química , Fibras de Estrés/fisiología , Vimentina/metabolismo , Soporte de Peso
7.
Soft Matter ; 15(9): 2043-2050, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30724956

RESUMEN

Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.


Asunto(s)
Adhesión Celular , Movimiento Celular , Humectabilidad , Dictyostelium/citología , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 113(41): 11414-11419, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681630

RESUMEN

The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the "minigut." This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction-diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon.


Asunto(s)
Bacterias/crecimiento & desarrollo , Tracto Gastrointestinal/microbiología , Peristaltismo , Reología , Recuento de Colonia Microbiana , Difusión , Modelos Biológicos
9.
Nat Methods ; 12(7): 653-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030446

RESUMEN

We present a reconstruction algorithm that resolves cellular tractions in diffraction-limited nascent adhesions (NAs). The enabling method is the introduction of sparsity regularization to the solution of the inverse problem, which suppresses noise without underestimating traction magnitude. We show that NAs transmit a distinguishable amount of traction and that NA maturation depends on traction growth rate. A software package implementing this numerical approach is provided.


Asunto(s)
Adhesión Celular , Microscopía Fluorescente/métodos , Células Cultivadas , Programas Informáticos
10.
J Immunol ; 196(9): 3828-33, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976957

RESUMEN

Leukocyte recruitment to inflammation sites progresses in a multistep cascade. Chemokines regulate multiple steps of the cascade, including arrest, transmigration, and chemotaxis. The most important chemokine receptor in mouse neutrophils is CXCR2, which couples through Gαi2- and Gαi3-containing heterotrimeric G proteins. Neutrophils arrest in response to CXCR2 stimulation. This is defective in Gαi2-deficient neutrophils. In this study, we show that Gαi3-deficient neutrophils showed reduced transmigration but normal arrest in mice. We also tested Gαi2- or Gαi3-deficient neutrophils in a CXCL1 gradient generated by a microfluidic device. Gαi3-, but not Gαi2-, deficient neutrophils showed significantly reduced migration and directionality. This was confirmed in a model of sterile inflammation in vivo. Gαi2-, but not Gαi3-, deficient neutrophils showed decreased Ca(2+) flux in response to CXCR2 stimulation. Conversely, Gαi3-, but not Gαi2-, deficient neutrophils exhibited reduced AKT phosphorylation upon CXCR2 stimulation. We conclude that Gαi2 controls arrest and Gαi3 controls transmigration and chemotaxis in response to chemokine stimulation of neutrophils.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neutrófilos/inmunología , Animales , Señalización del Calcio/genética , Movimiento Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiotaxis/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Unión Proteica , Receptores de Interleucina-8B/metabolismo , Migración Transendotelial y Transepitelial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA