Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Glob Chang Biol ; 28(4): 1268-1286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874078

RESUMEN

How will organisms cope when forced into warmer-than-preferred thermal environments? This is a key question facing our ability to monitor and manage biota as average annual temperatures increase, and is of particular concern for range-limited terrestrial species unable to track their preferred climatic envelope. Being ectothermic, desiccation prone, and often spatially restricted, island-inhabiting tropical amphibians exemplify this scenario. Pre-Anthropocene case studies of how insular amphibian populations responded to the enforced occupation of warmer-than-ancestral habitats may add a valuable, but currently lacking, perspective. We studied a population of frogs from the Seychelles endemic family Sooglossidae which, due to historic sea-level rise, have been forced to occupy a significantly warmer island (Praslin) than their ancestors and close living relatives. Evidence from thermal activity patterns, bioacoustics, body size distributions, and ancestral state estimations suggest that this population shifted its thermal niche in response to restricted opportunities for elevational dispersal. Relative to conspecifics, Praslin sooglossids also have divergent nuclear genotypes and call characters, a finding consistent with adaptation causing speciation in a novel thermal environment. Using an evolutionary perspective, our study reveals that some tropical amphibians have survived episodes of historic warming without the aid of dispersal and therefore may have the capacity to adapt to the currently warming climate. However, two otherwise co-distributed sooglossid species are absent from Praslin, and the deep evolutionary divergence between the frogs on Praslin and their closest extant relatives (~8 million years) may have allowed for gradual thermal adaptation and speciation. Thus, local extinction is still a likely outcome for tropical frogs experiencing warming climates in the absence of dispersal corridors to thermal refugia.


Asunto(s)
Anuros , Ecosistema , Aclimatación , Animales , Anuros/fisiología , Evolución Biológica , Cambio Climático , Islas , Clima Tropical
2.
Conserv Biol ; 36(4): e13918, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35554972

RESUMEN

The pink pigeon (Nesoenas mayeri) is an endemic species of Mauritius that has made a remarkable recovery after a severe population bottleneck in the 1970s to early 1990s. Prior to this bottleneck, an ex situ population was established from which captive-bred individuals were released into free-living subpopulations to increase population size and genetic variation. This conservation rescue led to rapid population recovery to 400-480 individuals, and the species was twice downlisted on the International Union for the Conservation of Nature (IUCN) Red List. We analyzed the impacts of the bottleneck and genetic rescue on neutral genetic variation during and after population recovery (1993-2008) with restriction site-associated sequencing, microsatellite analyses, and quantitative genetic analysis of studbook data of 1112 birds from zoos in Europe and the United States. We used computer simulations to study the predicted changes in genetic variation and population viability from the past into the future. Genetic variation declined rapidly, despite the population rebound, and the effective population size was approximately an order of magnitude smaller than census size. The species carried a high genetic load of circa 15 lethal equivalents for longevity. Our computer simulations predicted continued inbreeding will likely result in increased expression of deleterious mutations (i.e., a high realized load) and severe inbreeding depression. Without continued conservation actions, it is likely that the pink pigeon will go extinct in the wild within 100 years. Conservation rescue of the pink pigeon has been instrumental in the recovery of the free-living population. However, further genetic rescue with captive-bred birds from zoos is required to recover lost variation, reduce expression of harmful deleterious variation, and prevent extinction. The use of genomics and modeling data can inform IUCN assessments of the viability and extinction risk of species, and it helps in assessments of the conservation dependency of populations.


La paloma rosada (Nesoenas mayeri) es una especie endémica de Mauricio que se ha recuperado impresionantemente después de un grave cuello de botella poblacional a principios de la década de 1970 que duró hasta inicios de la década de 1990. Antes de este cuello de botella se había establecido una población ex situ de la cual se liberaban individuos reproducidos en cautiverio a las subpoblaciones en libertad para incrementar la variación genética y el tamaño poblacional. Este rescate de conservación derivó en una recuperación rápida de la población (400-480 individuos) y la especie cambió positivamente de categoría dos veces en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN). Analizamos los impactos del cuello de botella y el rescate genético sobre la variación genética neutral durante y después de la recuperación poblacional (de 1993 a 2008) mediante secuenciación RAD, análisis de microsatélites y análisis genéticos cuantitativos de los datos del libro genealógico de 1112 aves ubicadas en zoológicos de Europa y los Estados Unidos. Usamos simulaciones por computadora para estudiar los cambios pronosticados en la variación genética y en la viabilidad poblacional del pasado hacia el futuro. La variación genética declinó rápidamente, a pesar de la recuperación poblacional, y el tamaño efectivo de la población fue aproximadamente un orden de magnitud más pequeño que el tamaño del censo. La especie contó con una carga genética elevada de casi 15 equivalentes letales para la longevidad. Nuestras simulaciones pronostican que la endogamia continua probablemente resultará en un incremento en la expresión de mutaciones deletéreas (es decir, una carga realizada elevada) y en una depresión endogámica severa. Sin acciones continuas para la conservación, es probable que la paloma rosada esté extinta en vida libre dentro de cien años. El rescate de conservación de la paloma rosada ha sido fundamental en la recuperación de la población silvestre; sin embargo, se requiere de un rescate genético adicional con las aves de reproducción en cautiverio de los zoológicos para recuperar la variación perdida, reducir la expresión de la variación deletérea dañina y prevenir la extinción. El uso de la genómica y los datos modelados puede orientar las valoraciones de la UICN sobre la viabilidad y el riesgo de extinción de las especies, además de que ayuda en la evaluación de la dependencia que tienen las poblaciones de la conservación.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Animales , Aves/genética , Especies en Peligro de Extinción , Europa (Continente) , Variación Genética , Genómica , Densidad de Población
3.
Conserv Biol ; 32(6): 1325-1335, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30152576

RESUMEN

Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), has spread rapidly around the world, raising concerns for threatened species conservation and biosecurity associated with the global pet bird trade. The virus has been reported in several wild parrot populations, but data are lacking for many taxa and geographical areas with high parrot endemism. We aimed to advance understanding of BFDV distribution in many data-deficient areas and determine phylogenetic and biogeographic associations of the virus in 5 parrot species across Africa, the Indian Ocean islands, Asia, and Europe and focused specifically on the highly traded and invasive Psittacula krameri. Blood, feather, and tissue samples were screened for BFDV through standard polymerase chain reaction. Isolates obtained from positive individuals were then analyzed in a maximum likelihood phylogeny along with all other publically available global BFDV sequences. We detected BFDV in 8 countries where it was not known to occur previously, indicating the virus is more widely distributed than currently recognized. We documented for the first time the presence of BFDV in wild populations of P. krameri within its native range in Asia and Africa. We detected BFDV among introduced P. krameri in Mauritius and the Seychelles, raising concerns for island endemic species in the region. Phylogenetic relationships between viral sequences showed likely pathways of transmission between populations in southern Asia and western Africa. A high degree of phylogenetic relatedness between viral variants from geographically distant populations suggests recent introductions, likely driven by global trade. These findings highlight the need for effective regulation of international trade in live parrots, particularly in regions with high parrot endemism or vulnerable taxa where P. krameri could act as a reservoir host.


Asunto(s)
Enfermedades de las Aves , Infecciones por Circoviridae , Circovirus , Loros , África , África Occidental , Animales , Asia , Comercio , Conservación de los Recursos Naturales , Europa (Continente) , Islas del Oceano Índico , Internacionalidad , Mauricio , Filogenia
4.
Mol Ecol ; 26(20): 5716-5728, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833786

RESUMEN

Global-scale gene flow is an important concern in conservation biology as it has the potential to either increase or decrease genetic diversity in species and populations. Although many studies focus on the gene flow between different populations of a single species, the potential for gene flow and introgression between species is understudied, particularly in seabirds. The only well-studied example of a mixed-species, hybridizing population of petrels exists on Round Island, in the Indian Ocean. Previous research assumed that Round Island represents a point of secondary contact between Atlantic (Pterodroma arminjoniana) and Pacific species (Pterodroma neglecta and Pterodroma heraldica). This study uses microsatellite genotyping and tracking data to address the possibility of between-species hybridization occurring outside the Indian Ocean. Dispersal and gene flow spanning three oceans were demonstrated between the species in this complex. Analysis of migration rates estimated using bayesass revealed unidirectional movement of petrels from the Atlantic and Pacific into the Indian Ocean. Conversely, structure analysis revealed gene flow between species of the Atlantic and Pacific oceans, with potential three-way hybrids occurring outside the Indian Ocean. Additionally, geolocation tracking of Round Island petrels revealed two individuals travelling to the Atlantic and Pacific. These results suggest that interspecific hybrids in Pterodroma petrels are more common than was previously assumed. This study is the first of its kind to investigate gene flow between populations of closely related Procellariiform species on a global scale, demonstrating the need for consideration of widespread migration and hybridization in the conservation of threatened seabirds.


Asunto(s)
Aves/clasificación , Flujo Génico , Variación Genética , Genética de Población , Hibridación Genética , Migración Animal , Animales , Océano Atlántico , Genotipo , Océano Índico , Repeticiones de Microsatélite , Modelos Genéticos , Océano Pacífico
5.
Arch Virol ; 161(8): 2059-74, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27151279

RESUMEN

Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Circoviridae/veterinaria , Circovirus/aislamiento & purificación , Loros/virología , África , Américas , Animales , Animales Salvajes/virología , Asia , Infecciones por Circoviridae/virología , Circovirus/clasificación , Circovirus/genética , Circovirus/fisiología
6.
Mol Ecol ; 24(16): 4269-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26172573

RESUMEN

Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences.


Asunto(s)
Clima , Genética de Población , Especies Introducidas , Periquitos/genética , Animales , Teorema de Bayes , Comercio , ADN Mitocondrial/genética , Europa (Continente) , Marcadores Genéticos , Genotipo , Haplotipos , Mauricio , Mascotas , Análisis de Secuencia de ADN , Seychelles
7.
J Anim Ecol ; 84(4): 969-77, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25757031

RESUMEN

Infectious diseases are widely recognized to have substantial impact on wildlife populations. These impacts are sometimes exacerbated in small endangered populations, and therefore, the success of conservation reintroductions to aid the recovery of such species can be seriously threatened by outbreaks of infectious disease. Intensive management strategies associated with conservation reintroductions can further compound these negative effects in such populations. Exploring the sublethal effects of disease outbreaks among natural populations is challenging and requires longitudinal, individual life-history data on patterns of reproductive success and other indicators of individual fitness. Long-term monitoring data concerning detailed reproductive information of the reintroduced Mauritius parakeet (Psittacula echo) population collected before, during and after a disease outbreak was investigated. Deleterious effects of an outbreak of beak and feather disease virus (BFDV) were revealed on hatch success, but these effects were remarkably short-lived and disproportionately associated with breeding pairs which took supplemental food. Individual BFDV infection status was not predicted by any genetic, environmental or conservation management factors and was not associated with any of our measures of immune function, perhaps suggesting immunological impairment. Experimental immunostimulation using the PHA (phytohaemagglutinin assay) challenge technique did, however, provoke a significant cellular immune response. We illustrate the resilience of this bottlenecked and once critically endangered, island-endemic species to an epidemic outbreak of BFDV and highlight the value of systematic monitoring in revealing inconspicuous but nonetheless substantial ecological interactions. Our study demonstrates that the emergence of such an infectious disease in a population ordinarily associated with increased susceptibility does not necessarily lead to deleterious impacts on population growth and that negative effects on reproductive fitness can be short-lived.


Asunto(s)
Enfermedades de las Aves/epidemiología , Infecciones por Circoviridae/veterinaria , Psittacula/virología , Reproducción/fisiología , Animales , Enfermedades de las Aves/virología , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Circovirus , Conservación de los Recursos Naturales , Dieta/veterinaria , Especies en Peligro de Extinción , Aptitud Genética , Mauricio , Psittacula/inmunología , Psittacula/fisiología
8.
Conserv Biol ; 29(2): 341-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25354808

RESUMEN

Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Árboles de Decisión , Dieta , Especies en Peligro de Extinción , Pájaros Cantores/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Nueva Zelanda
9.
Wellcome Open Res ; 9: 312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221442

RESUMEN

We present a genome assembly from an individual male Falco punctatus (the Mauritius kestrel; Chordata; Aves; Falconiformes; Falconidae). The genome sequence is 1,279.3 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 17.34 kilobases in length.

10.
Evol Appl ; 17(5): e13701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38784837

RESUMEN

Genetic diversity underpins evolutionary potential that is essential for the long-term viability of wildlife populations. Captive populations harbor genetic diversity potentially lost in the wild, which could be valuable for release programs and genetic rescue. The Critically Endangered Arabian leopard (Panthera pardus nimr) has disappeared from most of its former range across the Arabian Peninsula, with fewer than 120 individuals left in the wild, and an additional 64 leopards in captivity. We (i) examine genetic diversity in the wild and captive populations to identify global patterns of genetic diversity and structure; (ii) estimate the size of the remaining leopard population across the Dhofar mountains of Oman using spatially explicit capture-recapture models on DNA and camera trap data, and (iii) explore the impact of genetic rescue using three complementary computer modeling approaches. We estimated a population size of 51 (95% CI 32-79) in the Dhofar mountains and found that 8 out of 25 microsatellite alleles present in eight loci in captive leopards were undetected in the wild. This includes two alleles present only in captive founders known to have been wild-sourced from Yemen, which suggests that this captive population represents an important source for genetic rescue. We then assessed the benefits of reintroducing novel genetic diversity into the wild population as well as the risks of elevating the genetic load through the release of captive-bred individuals. Simulations indicate that genetic rescue can improve the long-term viability of the wild population by reducing its genetic load and realized load. The model also suggests that the genetic load has been partly purged in the captive population, potentially making it a valuable source population for genetic rescue. However, the greater loss of its genetic diversity could exacerbate genomic erosion of the wild population during a rescue program, and these risks and benefits should be carefully evaluated. An important next step in the recovery of the Arabian leopard is to empirically validate these conclusions, implement and monitor a genomics-informed management plan, and optimize a strategy for genetic rescue as a tool to recover Arabia's last big cat.

11.
Wellcome Open Res ; 9: 378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301440

RESUMEN

We present a genome assembly from an individual male Alexandrinus eques, formerly Psittacula eques (the Mauritius Parakeet; Chordata; Aves; Psittaciformes; Psittacidae). The genome sequence is 1203.8 megabases in span. Most of the assembly is scaffolded into 35 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 18.86 kilobases in length.

12.
J Virol ; 86(9): 5221-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22345474

RESUMEN

Circoviruses are among the smallest and simplest of all viruses, but they are relatively poorly characterized. Here, we intensively sampled two sympatric parrot populations from Mauritius over a period of 11 years and screened for the circovirus Beak and feather disease virus (BFDV). During the sampling period, a severe outbreak of psittacine beak and feather disease, which is caused by BFDV, occurred in Echo parakeets. Consequently, this data set presents an ideal system for studying the evolution of a pathogen in a natural population and to understand the adaptive changes that cause outbreaks. Unexpectedly, we discovered that the outbreak was most likely caused by changes in functionally important regions of the normally conserved replication-associated protein gene and not the immunogenic capsid. Moreover, these mutations were completely fixed in the Echo parakeet host population very shortly after the outbreak. Several capsid alleles were linked to the replication-associated protein outbreak allele, suggesting that whereas the key changes occurred in the latter, the scope of the outbreak and the selective sweep may have been influenced by positive selection in the capsid. We found evidence for viral transmission between the two host populations though evidence for the invasive species as the source of the outbreak was equivocal. Finally, the high evolutionary rate that we estimated shows how rapidly new variation can arise in BFDV and is consistent with recent results from other small single-stranded DNA viruses.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Brotes de Enfermedades/veterinaria , Especies en Peligro de Extinción , Evolución Molecular , Periquitos/virología , Animales , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/transmisión , Circovirus/clasificación , Cruzamientos Genéticos , Genes Virales , Datos de Secuencia Molecular , Tasa de Mutación , Filogenia , Selección Genética
13.
Mol Ecol ; 22(18): 4644-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23962083

RESUMEN

Re-introduction is an important tool for recovering endangered species; however, the magnitude of genetic consequences for re-introduced populations remains largely unknown, in particular the relative impacts of historical population bottlenecks compared to those induced by conservation management. We characterize 14 microsatellite loci developed for the Seychelles paradise flycatcher and use them to quantify temporal and spatial measures of genetic variation across a 134-year time frame encompassing a historical bottleneck that reduced the species to ~28 individuals in the 1960s, through the initial stages of recovery and across a second contemporary conservation-introduction-induced bottleneck. We then evaluate the relative impacts of the two bottlenecks, and finally apply our findings to inform broader re-introduction strategy. We find a temporal trend of significant decrease in standard measures of genetic diversity across the historical bottleneck, but only a nonsignificant downward trend in number of alleles across the contemporary bottleneck. However, accounting for the different timescales of the two bottlenecks (~40 historical generations versus <1 contemporary generation), the loss of genetic diversity per generation is greater across the contemporary bottleneck. Historically, the flycatcher population was genetically structured; however, extinction on four of five islands has resulted in a homogeneous contemporary population. We conclude that severe historical bottlenecks can leave a large footprint in terms of sheer quantity of genetic diversity lost. However, severely depleted genetic diversity does not render a species immune to further genetic erosion upon re-introduction. In some cases, the loss of genetic diversity per generation can, initially at least, be greater across re-introduction-induced bottlenecks.


Asunto(s)
Especies en Peligro de Extinción , Variación Genética , Pájaros Cantores/genética , Animales , Conservación de los Recursos Naturales , Evolución Molecular , Marcadores Genéticos , Genética de Población , Técnicas de Genotipaje , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Dinámica Poblacional , Seychelles , Factores de Tiempo
14.
Mol Phylogenet Evol ; 67(2): 336-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23416757

RESUMEN

We construct a molecular phylogeny of Terpsiphone flycatchers of the Indian Ocean and use this to investigate their evolutionary relationships. A total of 4.4 kb of mitochondrial (cyt-b, ND3, ND2, control region) and nuclear (G3PDH, MC1R) sequence data were obtained from all species, sub-species and island populations of the region. Colonisation of the western Indian Ocean has been within the last two million years and greatly postdates the formation of the older islands of the region. A minimum of two independent continent-island colonisation events must have taken place in order to explain the current distribution and phylogenetic placement of Terpsiphone in this region. While five well-diverged Indian Ocean clades are detected, the relationship between them is unclear. Short intermodal branches are indicative of rapid range expansion across the region, masking exact routes and chronology of colonisation. The Indian Ocean Terpsiphone taxa fall into five well supported clades, two of which (the Seychelles paradise flycatcher and the Mascarene paradise flycatcher) correspond with currently recognised species, whilst a further three (within the Madagascar paradise flycatcher) are not entirely predicted by taxonomy, and are neither consistent with distance-based nor island age-based models of colonisation. We identify the four non-Mascarene clades as Evolutionarily Significant Units (ESUs), while the Mascarene paradise flycatcher contains two ESUs corresponding to the Mauritius and Réunion subspecies. All six ESUs are sufficiently diverged to be worthy of management as if they were separate species. This phylogenetic reconstruction highlights the importance of sub-specific molecular phylogenetic reconstructions in complex island archipelago settings in clarifying phylogenetic history and ESUs that may otherwise be overlooked and inadvertently lost. Our phylogenetic reconstruction has identified hidden pockets of evolutionary distinctiveness, which provide a valuable platform upon which to re-evaluate investment of conservation resources within the Terpsiphone flycatchers of the Indian Ocean.


Asunto(s)
Evolución Molecular , Filogenia , Pájaros Cantores/genética , Animales , Variación Genética , Océano Índico , Proteínas Mitocondriales/genética , Proteínas Nucleares
15.
PLoS One ; 15(11): e0242726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33196675

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0226064.].

16.
Sci Rep ; 9(1): 4779, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886308

RESUMEN

Emerging Infectious Diseases (EIDs) are recognised as global extinction drivers of threatened species. Unfortunately, biodiversity managers have few tested solutions to manage them when often the desperate need for solutions necessitates a response. Here we test in situ biosecurity protocols to assess the efficacy of managing Psittacine beak and feather disease (PBFD), one of the most common and emergent viral diseases in wild parrots (Psittaciformes) that is currently affecting numerous threatened species globally. In response to an outbreak of PBFD in Mauritius "echo" parakeets (Psittacula eques), managers implemented a set of biosecurity protocols to limit transmission and impact of Beak and feather disease virus (BFDV). Here we used a reciprocal design experiment on the wild population to test whether BFDV management reduced viral prevalence and viral load, and improved nestling body condition and fledge success. Whilst management reduced the probability of nestling infection by approximately 11% there was no observed impact on BFDV load and nestling body condition. In contrast to expectations there was lower fledge success in nests with added BFDV biosecurity (83% in untreated vs. 79% in treated nests). Our results clearly illustrate that management for wildlife conservation should be critically evaluated through targeted monitoring and experimental manipulation, and this evaluation should always focus on the fundamental objective of conservation.


Asunto(s)
Enfermedades de las Aves/prevención & control , Infecciones por Circoviridae/prevención & control , Enfermedades Transmisibles Emergentes/prevención & control , Especies en Peligro de Extinción , Control de Infecciones/métodos , Psittacula/virología , Animales , Enfermedades de las Aves/virología , Infecciones por Circoviridae/virología , Circovirus/patogenicidad , Enfermedades Transmisibles Emergentes/virología
17.
PLoS One ; 14(12): e0226064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31869373

RESUMEN

Flight loss has evolved independently in numerous island bird lineages worldwide, and particularly in rails (Rallidae). The Aldabra white-throated rail (Dryolimnas [cuvieri] aldabranus) is the last surviving flightless bird in the western Indian Ocean, and the only living flightless subspecies within Dryolimnas cuvieri, which is otherwise volant across its extant range. Such a difference in flight capacity among populations of a single species is unusual, and could be due to rapid evolution of flight loss, or greater evolutionary divergence than can readily be detected by traditional taxonomic approaches. Here we used genetic and morphological analyses to investigate evolutionary trajectories of living and extinct Dryolimnas cuvieri subspecies. Our data places D. [c.] aldabranus among the most rapid documented avian flight loss cases (within an estimated maximum of 80,000-130,000 years). However, the unusual intraspecific variability in flight capacity within D. cuvieri is best explained by levels of genetic divergence, which exceed those documented between other volant taxa versus flightless close relatives, all of which have full species status. Our results also support consideration of Dryolimnas [cuvieri] aldabranus as sufficiently evolutionary distinct from D. c. cuvieri to warrant management as an evolutionary significant unit. Trait variability among closely related lineages should be considered when assessing conservation status, particularly for traits known to influence vulnerability to extinction (e.g. flightlessness).


Asunto(s)
Evolución Biológica , Aves/clasificación , Animales , Aves/genética , Aves/fisiología , Conservación de los Recursos Naturales , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Vuelo Animal , Variación Genética , Haplotipos , Océano Índico , Islas , Filogenia , Análisis de Secuencia de ADN
18.
PLoS One ; 13(1): e0191737, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29352294

RESUMEN

The use of aquatic environmental DNA (eDNA) to detect the presence of species depends on the seasonal activity of the species in the sampled habitat. eDNA may persist in sediments for longer than it does in water, and analysing sediment could potentially extend the seasonal window for species assessment. Using the great crested newt as a model, we compare how detection probability changes across the seasons in eDNA samples collected from both pond water and pond sediments. Detection of both aquatic and sedimentary eDNA varied through the year, peaking in the summer (July), with its lowest point in the winter (January): in all seasons, detection probability of eDNA from water exceeded that from sediment. Detection probability of eDNA also varied between study areas, and according to great crested newt habitat suitability and sediment type. As aquatic and sedimentary eDNA show the same seasonal fluctuations, the patterns observed in both sample types likely reflect current or recent presence of the target species. However, given the low detection probabilities found in the autumn and winter we would not recommend using either aquatic or sedimentary eDNA for year-round sampling without further refinement and testing of the methods.


Asunto(s)
ADN/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Agua/análisis , Animales , ADN/genética , ADN/aislamiento & purificación , Ecosistema , Inglaterra , Estanques/análisis , Estaciones del Año , Triturus/genética
19.
PLoS One ; 12(8): e0183371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813525

RESUMEN

The use of environmental DNA (eDNA) to assess the presence-absence of rare, cryptic or invasive species is hindered by a poor understanding of the factors that can remove DNA from the system. In aquatic systems, eDNA can be transported out either horizontally in water flows or vertically by incorporation into the sediment. Equally, eDNA may be broken down by various biotic and abiotic processes if the target organism leaves the system. We use occupancy modelling and a replicated mesocosm experiment to examine how detection probability of eDNA changes once the target species is no longer present. We hypothesise that detection probability falls faster with a sediment which has a large number of DNA binding sites such as topsoil or clay, over lower DNA binding capacity substrates such as sand. Water removed from ponds containing the target species (the great crested newt) initially showed high detection probabilities, but these fell to between 40% and 60% over the first 10 days and to between 10% and 22% by day 15: eDNA remained detectable at very low levels until day 22. Very little difference in detection was observed between the control group (no substrate) and the sand substrate. A small reduction in detection probability was observed between the control and clay substrates, but this was not significant. However, a highly significant reduction in detection probability was observed with a topsoil substrate. This result is likely to have stemmed from increased levels of PCR inhibition, suggesting that incorporation of DNA into the sentiment is of only limited importance. Surveys of aquatic species using eDNA clearly need to take account of substrate type as well as other environmental factors when collecting samples, analysing data and interpreting the results.


Asunto(s)
ADN/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Reacción en Cadena de la Polimerasa , Agua/química
20.
Sci Rep ; 7: 46294, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393885

RESUMEN

Analysing DNA that organisms release into the environment (environmental DNA, or eDNA) has enormous potential for assessing rare and cryptic species. At present the method is only reliably used to assess the presence-absence of species in natural environments, as seasonal influences on eDNA in relation to presence, abundance, life stages and seasonal behaviours are poorly understood. A naturally colonised, replicated pond system was used to show how seasonal changes in eDNA were influenced by abundance of adults and larvae of great crested newts (Triturus cristatus). Peaks in eDNA were observed in early June when adult breeding was coming to an end, and between mid-July and mid-August corresponding to a peak in newt larval abundance. Changes in adult body condition associated with reproduction also influenced eDNA concentrations, as did temperature (but not rainfall or UV). eDNA concentration fell rapidly as larvae metamorphosed and left the ponds. eDNA concentration may therefore reflect relative abundance in different ponds, although environmental factors can affect the concentrations observed. Nevertheless, eDNA surveys may still represent an improvement over unadjusted counts which are widely used in population assessments but have unreliable relationships with population size.


Asunto(s)
ADN/análisis , Ambiente , Monitoreo del Ambiente , Estaciones del Año , Animales , Clima , Monitoreo del Ambiente/métodos , Humanos , Densidad de Población , Dinámica Poblacional , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA