Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33727416

RESUMEN

As biological invasions continue to increase globally, eradication programs have been undertaken at significant cost, often without consideration of relevant ecological theory. Theoretical fisheries models have shown that harvest can actually increase the equilibrium size of a population, and uncontrolled studies and anecdotal reports have documented population increases in response to invasive species removal (akin to fisheries harvest). Both findings may be driven by high levels of juvenile survival associated with low adult abundance, often referred to as overcompensation. Here we show that in a coastal marine ecosystem, an eradication program resulted in stage-specific overcompensation and a 30-fold, single-year increase in the population of an introduced predator. Data collected concurrently from four adjacent regional bays without eradication efforts showed no similar population increase, indicating a local and not a regional increase. Specifically, the eradication program had inadvertently reduced the control of recruitment by adults via cannibalism, thereby facilitating the population explosion. Mesocosm experiments confirmed that adult cannibalism of recruits was size-dependent and could control recruitment. Genomic data show substantial isolation of this population and implicate internal population dynamics for the increase, rather than recruitment from other locations. More broadly, this controlled experimental demonstration of stage-specific overcompensation in an aquatic system provides an important cautionary message for eradication efforts of species with limited connectivity and similar life histories.


Asunto(s)
Ecosistema , Especies Introducidas , Modelos Teóricos , Conducta Predatoria , Animales , Organismos Acuáticos , Biodiversidad , Densidad de Población , Dinámica Poblacional
2.
J Phycol ; 59(5): 989-1004, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540062

RESUMEN

Climate change is affecting marine ecosystems in many ways, including raising temperatures and leading to ocean acidification. From 2014 to 2016, an extensive marine heat wave extended along the west coast of North America and had devastating effects on numerous species, including bull kelp (Nereocystis luetkeana). Bull kelp is an important foundation species in coastal ecosystems and can be affected by marine heat waves and ocean acidification; however, the impacts have not been investigated on sensitive early life stages. To determine the effects of changing temperatures and carbonate levels on Northern California's bull kelp populations, we collected sporophylls from mature bull kelp individuals in Point Arena, CA. At the Bodega Marine Laboratory, we released spores from field-collected bull kelp, and cultured microscopic gametophytes in a common garden experiment with a fully factorial design crossing modern conditions (11.63 ± 0.54°C and pH 7.93 ± 0.26) with observed extreme climate conditions (15.56 ± 0.83°C and 7.64 ± 0.32 pH). Our results indicated that both increased temperature and decreased pH influenced growth and egg production of bull kelp microscopic stages. Increased temperature resulted in decreased gametophyte survival and offspring production. In contrast, decreased pH had less of an effect but resulted in increased gametophyte survival and offspring production. Additionally, increased temperature significantly impacted reproductive timing by causing female gametophytes to produce offspring earlier than under ambient temperature conditions. Our findings can inform better predictions of the impacts of climate change on coastal ecosystems and provide key insights into environmental dynamics regulating the bull kelp lifecycle.


Asunto(s)
Kelp , Phaeophyceae , Humanos , Ecosistema , Agua de Mar , Cambio Climático , Concentración de Iones de Hidrógeno
3.
Mol Ecol ; 31(1): 55-69, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431151

RESUMEN

Adaptation across environmental gradients has been demonstrated in numerous systems with extensive dispersal, despite high gene flow and consequently low genetic structure. The speed and mechanisms by which such adaptation occurs remain poorly resolved, but are critical to understanding species spread and persistence in a changing world. Here, we investigate these mechanisms in the European green crab Carcinus maenas, a globally distributed invader. We focus on a northwestern Pacific population that spread across >12 degrees of latitude in 10 years from a single source, following its introduction <35 years ago. Using six locations spanning >1500 km, we examine genetic structure using 9376 single nucleotide polymorphisms (SNPs). We find high connectivity among five locations, with significant structure between these locations and an enclosed lagoon with limited connectivity to the coast. Among the five highly connected locations, the only structure observed was a cline driven by a handful of SNPs strongly associated with latitude and winter temperature. These SNPs are almost exclusively found in a large cluster of genes in strong linkage disequilibrium that was previously identified as a candidate for cold tolerance adaptation in this species. This region may represent a balanced polymorphism that evolved to promote rapid adaptation in variable environments despite high gene flow, and which now contributes to successful invasion and spread in a novel environment. This research suggests an answer to the paradox of genetically depauperate yet successful invaders: populations may be able to adapt via a few variants of large effect despite low overall diversity.


Asunto(s)
Braquiuros , Flujo Génico , Aclimatación , Adaptación Fisiológica , Animales , Braquiuros/genética , Variación Genética , Genética de Población , Polimorfismo de Nucleótido Simple
4.
Ecology ; 98(9): 2468-2478, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28653399

RESUMEN

The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change.


Asunto(s)
Ecosistema , Ostreidae/fisiología , Salinidad , Estrés Fisiológico , Animales , Cambio Climático , Calor , Temperatura
5.
Ecology ; 97(12): 3503-3516, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912012

RESUMEN

Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure was correlated with lower summer water temperature, higher winter salinity, and shorter residence time: all indicators of stronger marine influence on estuaries. Recruitment failure was also more common in estuaries with limited networks of nearby adult oysters. Large existing oyster networks are thus of high conservation value, while estuaries that lack them would benefit from restoration efforts to increase the extent and connectivity of sites supporting oysters.


Asunto(s)
Ostreidae/fisiología , Distribución Animal , Animales , Canadá , Océano Pacífico , Dinámica Poblacional , Estados Unidos
6.
Proc Natl Acad Sci U S A ; 115(10): 2270-2271, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467290
7.
Glob Chang Biol ; 21(7): 2488-2499, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25683857

RESUMEN

Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel-cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel-cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low-salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life-history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life-history traits.

8.
Ecol Appl ; 24(1): 25-37, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24640532

RESUMEN

As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species--a vine, a marine mussel, and a freshwater crayfish--under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions.


Asunto(s)
Especies Introducidas , Modelos Biológicos , Modelos Estadísticos , Animales , Astacoidea/fisiología , Celastrus/fisiología , Demografía , Mytilus/fisiología , Estados Unidos
9.
Ecol Lett ; 16(6): 821-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23521769

RESUMEN

Biological invasions depend in part on the resistance of native communities. Meta-analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta-analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model-selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions.


Asunto(s)
Organismos Acuáticos , Ecosistema , Especies Introducidas , Biodiversidad , Conducta Competitiva , Cadena Alimentaria
10.
Ecol Lett ; 16(2): 261-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23062213

RESUMEN

Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non-native (157 species) and co-occurring native species (204 species) under different temperature, CO(2) and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non-native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO(2) largely inhibited native species. There was a general trend towards stronger responses among non-native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions.


Asunto(s)
Ecosistema , Especies Introducidas , Fenómenos Fisiológicos de las Plantas , Dióxido de Carbono , Cambio Climático , Temperatura
11.
Ecol Appl ; 23(7): 1691-706, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24261049

RESUMEN

Predicting population establishment based on initial population size is a theoretically and empirically challenging problem whose resolution informs a multitude of applications. Indeed, it is a central problem in the management of introduced, endangered, harvested, and pathogenic organisms. We focus here on introduced species. We synthesize the current state of modeling in this predictive enterprise and outline future directions in the application of these models to developing regulations intended to prevent the establishment of invaders. Descriptive and mechanistic models of single-population introductions are fairly well developed and have provided insight into invasion risk in laboratory and field conditions. However, many invasions stem from large-scale and repeated releases of a multitude of species from relatively indiscriminate invasion vectors associated with international trade and travel. Vector-scale models of invasion risk are less well developed and are characterized largely by the use of untested proxy variables for propagule pressure. We illustrate the problems associated with proxy variables and introduce a more mechanistic theoretical formulation characterizing vector-scale invasion pressure in terms of propagule pressure (number of introduced individuals) and colonization pressure (number of introduced species). We outline key questions to be addressed in applying both single-population and vector-scale models to the development of threshold-based invasion regulations. We illustrate these ecological and applied questions using examples from terrestrial, aquatic, and marine systems. We develop in detail examples from ballast-water transport that, as one of the best-characterized global invasion vectors and one that is subject to emerging international threshold-based biosecurity regulations, provides a rich case study.


Asunto(s)
Especies Introducidas , Modelos Biológicos , Plantas/clasificación , Animales , Simulación por Computador , Ecosistema , Dinámica Poblacional , Política Pública , Factores de Riesgo , Semillas , Especificidad de la Especie
12.
Mov Ecol ; 11(1): 73, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924137

RESUMEN

A long dispersal distance is widely used to indicate high invasiveness, but it ignores the temporal dimensions of plant invasion. Faster dispersal rates (= distance/time) of invasive species than native ones have been widely used in modeling species invasion and planning control management. However, the comparison of dispersal rate between invasive and native plants, particularly for dispersal on a local or landscape scale, has not been tested with a comprehensive dataset. Moreover, both the effects of plant functional traits on the dispersal rate and variation in the functional-trait effects between invasive and native plants remain elusive. Compiling studies from 30 countries globally, we compared seed dispersal rates (km/year) on a local or landscape scale between 64 observations of invasive and 78 observations of native plants given effects of plant life forms, disturbance levels, and measurement methods. Furthermore, we compared the effects of functional traits on dispersal rate between invasive and native species. We found that: (1) Trait values were similar between the invasive and native plants except for the greater height of woody native plants than woody invasive ones; (2) Compared within the same plant life form, the faster dispersal rates of invasive species were found in herbaceous plants, not in woody plants, and disturbance level and measurement methods did not affect the rate comparison; (3) Plant height and seed length had significant effects on dispersal rates of both invasive and native plants, but the effect of leaf dry matter content (LDMC) was only significant on herbaceous invasive plants. The comparison of dispersal rate between invasive and native plants varied by plant life form. The convergent values but divergent dispersal effects of plant traits between invasive and native species suggest that the trait effects on invasiveness could be better understood by trait association with key factors in invasiveness, e.g., dispersal rate, than the direct trait comparison between invasive and native plants.

13.
Conserv Biol ; 26(3): 472-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22394251

RESUMEN

The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds.


Asunto(s)
Braquiuros/fisiología , Charadriiformes/fisiología , Cadena Alimentaria , Especies Introducidas , Animales , Peso Corporal , California , Conservación de los Recursos Naturales , Dieta , Conducta Alimentaria
14.
Ecology ; 103(6): e3695, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35352344

RESUMEN

Estuaries represent steep stress gradients for aquatic organisms, with abiotic stress due to temperature and salinity typically increasing with distance into estuary. Invertebrate communities and their predators are strongly influenced by these stress gradients. The environmental stress model predicts that the importance of predation in structuring communities decreases with increasing environmental stress. Estuaries contain a stress gradient for marine organisms this includes salinity, temperature, and other abiotic properties. Additionally, estuaries are hotspots for biological invasions; increased stress tolerance among non-native species could change the predictions of the environmental stress model. In this study, we investigate how introduced species alter the predictions of the environmental stress model by examining the effects of predators on sessile invertebrates across an estuarine gradient. To do this, we deployed recruitment plates across the estuarine gradient of Tomales Bay, California, USA using various caging treatments over the summer of 2019. We found that the effect of predation changed across sites, with the mid-estuary site experiencing the greatest reductions in prey abundance and prey species richness when exposed to predators. This was likely to be due to higher proportions of non-native prey and predator taxa mid-estuary, including solitary ascidians, which are highly susceptible to predation. Overall, predation did not follow the predictions of the environmental stress model, but rather followed the abundance of functional groups with non-native species, whose distribution could be mediated by environmental stress gradients. We suggest that this may be a general result and that communities subject to large numbers of stress-tolerant invaders may have high rates of consumption in high stress areas, contrasting predictions by previous models.


Asunto(s)
Ecosistema , Estuarios , Animales , Organismos Acuáticos , Invertebrados , Salinidad
15.
PLoS One ; 17(3): e0263998, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298468

RESUMEN

To conserve coastal foundation species, it is essential to understand patterns of distribution and abundance and how they change over time. We synthesized oyster distribution data across the west coast of North America to develop conservation strategies for the native Olympia oyster (Ostrea lurida), and to characterize populations of the non-native Pacific oyster (Magallana gigas). We designed a user-friendly portal for data entry into ArcGIS Online and collected oyster records from unpublished data submitted by oyster experts and from the published literature. We used the resulting 2,000+ records to examine spatial and temporal patterns and made an interactive web-based map publicly available. Comparing records from pre-2000 vs. post-2000, we found that O. lurida significantly decreased in abundance and distribution, while M. gigas increased significantly. Currently the distribution and abundance of the two species are fairly similar, despite one species being endemic to this region since the Pleistocene, and the other a new introduction. We mapped the networks of sites occupied by oysters based on estimates of larval dispersal distance, and found that these networks were larger in Canada, Washington, and southern California than in other regions. We recommend restoration to enhance O. lurida, particularly within small networks, and to increase abundance where it declined. We also recommend restoring natural biogenic beds on mudflats and sandflats especially in the southern range, where native oysters are currently found most often on riprap and other anthropogenic structures. This project can serve as a model for collaborative mapping projects that inform conservation strategies for imperiled species or habitats.


Asunto(s)
Ostrea , Animales , Canadá , Ecosistema , América del Norte , Washingtón
16.
Ecol Appl ; 21(3): 915-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639054

RESUMEN

Coastal resource managers are often tasked with managing coastal ecosystems that are stressed by overexploitation, climate change, contaminants, and habitat loss, as well as biological invasions. Therefore, managers increasingly need better economic data to help them prioritize their management strategies and distribute their increasingly limited resources to those strategies. Despite frequent pronouncements about the substantial ecological and economic impacts of invasive species, there have been few if any rigorous analyses of the economic impacts of invasive species in coastal systems. Here we present a bioeconomic analysis of the impacts of the European green crab, Carcinus maenas, on commercial shellfisheries along the West Coast of the United States. Green crabs are among the most comprehensively studied and widely distributed invasive species in coastal systems, with established populations on every continent except Antarctica. Their impacts on commercial bivalve fisheries have been alleged or substantiated to varying degrees, but no formal analysis of the economic impacts of the green crab has been conducted. We assess economic impacts using a combination of ecological and economic models. The ecological models incorporate green crab dispersal and description of estuarine habitat and the relationship between green crab abundance and predation on prey populations. The economic analysis focuses on the green crab impacts on commercial shellfisheries, including both historical and present impacts of green crabs on several important shellfisheries, including soft-shell clams, blue mussels, scallops, hard-shell clams, and Manila clams. We conclude that the past and present economic impacts on the West Coast shellfisheries are minor, although losses could increase significantly if densities increase or with northward range expansion into Alaska.


Asunto(s)
Braquiuros/fisiología , Explotaciones Pesqueras/economía , Especies Introducidas , Modelos Biológicos , Modelos Económicos , Animales , Bivalvos/fisiología , Simulación por Computador , Ecosistema , Monitoreo del Ambiente , Océano Pacífico , Estados Unidos
17.
Ecology ; 102(2): e03244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33191507

RESUMEN

Burrowing animals can profoundly influence the structure of surrounding communities, as well as the performance of individual species. Changes in the community structure of burrowing animals or plants together with changing abiotic parameters could shift the influence of burrowers on surrounding habitats. For example, prior studies in salt marshes suggest that fiddler crabs stimulate cordgrass production, but leaf-grazing crabs suppress cordgrass production. Unfortunately, testing this prediction and others are impeded because few studies have examined crab impacts on the plant community and across multiple sites, multiple years, or both. This challenges our ability to predict how burrowing animals will influence plant community structure, and when and where these impacts will occur. We manipulated the densities of the dominant burrowing crabs in plant assemblages dominated by Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica) at three sites in southern California for three years (2016, 2017, 2018). Crab impacts on plant community structure differed among each of our three sites. In contrast to our predictions, (1) leaf-grazing crabs (Pachygrapsus crassipes) had positive effects on cordgrass cover at one site and no effect on cordgrass production at a nearby site in the same marsh and (2) fiddler crabs (Uca crenulata) did not stimulate cordgrass production at another marsh. Because crabs affected traits of cordgrass, but not pickleweed, in the direction consistent with changes in cordgrass cover, we propose that marsh-specific crab effects on community structure were largely mediated through changes in cordgrass, as opposed to pickleweed. Importantly, crabs facilitated cordgrass during marsh-wide cordgrass loss, suggesting that crabs may mitigate environmental stress for this ecologically important plant. Because cordgrass abundance can be a critical measure of marsh functioning and is often a restoration target, we suggest that managing cordgrass populations would benefit from additional information about crab populations and their impacts among years, and among and within marshes.


Asunto(s)
Braquiuros , Animales , Ecosistema , Poaceae , Humedales
18.
Ecology ; 102(8): e03417, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043815

RESUMEN

Understanding how the biological invasion is driven by environmental factors will improve model prediction and advance early detection, especially in the context of accelerating anthropogenic ecological changes. Although a large body of studies has examined how favorable environments promote biological invasions, a more comprehensive and mechanistic understanding of invasive species response to unfavorable/stressful conditions is still developing. Grass invasion has been problematic across the globe; in particular, C4 grass invaders, with high drought tolerance, adaptations to high temperatures, and high water use efficiency, could become more severe. Here, we conducted a rigorous microcosm experiment, with one of the most damaging invasive C4 grass, cogongrass (Imperata cylindrica), to explore how cogongrass responds to soil water and nutrient stress. We further integrated the results of the microcosm study with a species distribution model to (1) corroborate greenhouse results with field observations and (2) validate the robustness of our findings at subcontinental scales. Both the microcosm experiments and species distribution model agreed that soil water stress had a stronger impact on cogongrass than the nutrient one. New vegetative growth of cogongrass continued to be inhibited by the prior water stress. The significant water effect on cogongrass total biomass was supported by the finding that both allometric and biochemical traits of cogongrass did not show significant responses to the changes in water treatment. Different to the conventional wisdom that nutrient enrichment plays a bigger role in facilitating biological invasions, this study highlighted the possibility that water conditions may have a more substantial effect on some aggressive invaders. Therefore, an important implication of this study on biological conservation is that field managers might take advantage of the negative effect of global drought on some invasive species to increase the efficiency of their controlling efforts because invasive species may become more vulnerable under drought effect.


Asunto(s)
Especies Introducidas , Poaceae , Biomasa , Sequías , Suelo
19.
PLoS One ; 16(6): e0252810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153054

RESUMEN

Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers' portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation-issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Ostrea/fisiología , Animales , Colombia Británica , California , Estuarios , Geografía , Humanos , México , Oregon , Reproducibilidad de los Resultados , Factores de Riesgo
20.
Ecology ; 101(4): e02980, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31960957

RESUMEN

Extreme climate events, such as drought, are becoming increasingly important drivers of plant community change, yet little is known about their impacts on invasive plants. Further, drought impacts may be altered by other anthropogenic stressors, such as eutrophication. We found drought dramatically reduced density of invasive Lepidium latifolium in salt marshes, and this die-back was mitigated by nutrient addition. In a 3-yr field experiment (2014-2016) conducted during an unprecedented drought (2012-2015), we tracked the effects of drought and nutrient addition on the plant community. We conducted this research at four salt marshes across a salinity gradient in the San Francisco Bay, California, USA. We manipulated paired native and invaded plots, one-half of which were treated monthly with N and P for 1.5 yr during the most intense period of the drought and one subsequent wet winter. In addition, we monitored unmanipulated L. latifolium-invaded transects within our freshest and most saline sites throughout the three years of our manipulative experiment and one additional wet winter. We documented a dramatic die-back of invasive L. latifolium during extreme drought, with reductions in stem density (52-100%) and height (17-47%) that were more severe at low salinity sites than high salinity sites. We found nutrient application lessened the effect of drought on L. latifolium stem density, but not height. In native plots, extreme drought reduced native plant cover (4-24%), but nutrient addition mitigated this impact. Interestingly, native plants in invaded plots did not suffer reductions in cover due to drought, perhaps because they were simultaneously benefiting from the die-back of the invader. Our results show drought negatively impacted both native and invasive plants and this impact was stronger on the invader, which experienced persistent declines two years after the end of the drought. However, by mitigating the effect of drought on invasive plants, nutrient addition potentially erased the advantage drought provided native plants over invasive plants under ambient nutrient conditions.


Asunto(s)
Sequías , Plantas , Clima , Ecosistema , Nutrientes , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA