Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Bacteriol ; 195(13): 3093-104, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667230

RESUMEN

Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Transactivadores/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Virulencia/fisiología , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/genética , Transactivadores/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Virulencia/genética
2.
Am J Respir Crit Care Med ; 184(3): 345-54, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21562128

RESUMEN

RATIONALE: The opportunistic pathogen Pseudomonas aeruginosa causes both acute and chronic lung infections and is particularly problematic in patients with cystic fibrosis and those undergoing mechanical ventilation. Decreased lung function contributes significantly to morbidity and mortality during P. aeruginosa infection, and damage inflicted by P. aeruginosa virulence factors contributes to lung function decline. OBJECTIVES: We sought to describe direct contribution of a bacterial phospholipase C/sphingomyelinase, PlcHR, to alteration of host lung physiology and characterize a potential therapeutic for protection of lung function. METHODS: We infected C57Bl/6 mice with P. aeruginosa wild-type or isogenic plcHR deletion strains and measured lung function using computer-controlled ventilators. For in vivo testing, miltefosine was delivered intraperitoneally 1 hour after infection. Infection and respiratory endpoints were at 24 hours after infection. MEASUREMENTS AND MAIN RESULTS: P. aeruginosa wild-type infection caused significant lung function impairment, whereas the effects of a ΔplcHR strain infection were much less severe. Surfactometry analysis of bronchoalveolar lavage fluid indicated that PlcHR decreased pulmonary surfactant function. Miltefosine has structural similarity to the PC and sphingomyelin substrates of PlcHR, and we found that it inhibits the cleavage of these choline-containing lipids in vitro. Miltefosine administration after P. aeruginosa infection limited the negative effects of PlcHR activity on lung function. CONCLUSIONS: We have directly linked production of a single virulence factor in P. aeruginosa with effects on lung function, and demonstrated that the inhibitor miltefosine protects lung function from PlcHR-dependent surfactant dysfunction.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Pseudomonas/microbiología , Infecciones del Sistema Respiratorio/etiología , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Líquido del Lavado Bronquioalveolar/química , Fibrosis Quística/complicaciones , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraperitoneales , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Infecciones Oportunistas/microbiología , Fosforilcolina/administración & dosificación , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Respiración Artificial/efectos adversos , Infecciones del Sistema Respiratorio/microbiología
3.
Infect Immun ; 77(3): 1103-11, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19103776

RESUMEN

Pseudomonas aeruginosa hemolytic phospholipase C, PlcH, can degrade phosphatidylcholine (PC) and sphingomyelin in eukaryotic cell membranes and extracellular PC in lung surfactant. Numerous studies implicate PlcH in P. aeruginosa virulence. The phosphorylcholine released by PlcH activity on phospholipids is hydrolyzed by a periplasmic phosphorylcholine phosphatase, PchP. Both plcH gene expression and PchP enzyme activity are positively regulated by phosphorylcholine degradation products, including glycine betaine. Here we report that the induction of plcH and pchP transcription by glycine betaine is mediated by GbdR, an AraC family transcription factor. Mutants that lack gbdR are unable to induce plcH and pchP in media containing glycine betaine or choline and in phosphatidylcholine-rich environments, such as lung surfactant or mouse lung lavage fluid. In T broth containing choline, the gbdR mutant exhibited a 95% reduction in PlcH activity. In electrophoretic mobility shift assays, a GbdR-maltose binding protein fusion bound specifically to both the plcH and pchP promoters. Promoter mapping, alignment of GbdR-regulated promoter sequences, and analysis of targeted promoter mutants that lack GbdR-dependent induction of transcription were used to identify a region necessary for GbdR-dependent transcriptional activation. GbdR also plays a significant role in plcH and pchP regulation within the mouse lung. Our studies suggest that GbdR is the primary regulator of plcH and pchP expression in PC-rich environments, such as the lung, and that pchP and other genes involved in phosphorylcholine catabolism are necessary to stimulate the GbdR-mediated positive feedback induction of plcH.


Asunto(s)
Factor de Transcripción de AraC/genética , Colina/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Monoéster Fosfórico Hidrolasas/genética , Pseudomonas aeruginosa/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Betaína/metabolismo , Análisis Mutacional de ADN , Ensayo de Cambio de Movilidad Electroforética , Masculino , Ratones , Ratones Endogámicos C57BL , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilcolina/metabolismo , Regiones Promotoras Genéticas , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcosina/análogos & derivados , Sarcosina/genética , Sarcosina/metabolismo , Transcripción Genética
4.
Mol Biol Cell ; 25(9): 1458-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24600045

RESUMEN

Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in nonneuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non-receptor tyrosine kinase, and the Drosophila orthologue of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treating cortical neurons of the wild-type mouse, but not the Kal7(KO) mouse, with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.


Asunto(s)
Espinas Dendríticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas Oncogénicas v-abl/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Calpaína/metabolismo , Células Cultivadas , Espinas Dendríticas/ultraestructura , Hipocampo/citología , Ratones Noqueados , Neuronas/metabolismo , Neuronas/ultraestructura , Fragmentos de Péptidos/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteolisis , Ratas Sprague-Dawley , Sinapsis/fisiología , Transferrina/metabolismo
5.
PLoS One ; 8(10): e76877, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130800

RESUMEN

C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (I j ) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The I j deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of I j between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Conexinas/metabolismo , Fenómenos Electrofisiológicos , Músculos/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Conexinas/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Mutación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA