Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 28(23): 6921-6943, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36117412

RESUMEN

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Carbono , Temperatura , Agua
2.
Ecol Appl ; 31(4): e02312, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33630380

RESUMEN

Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.


Asunto(s)
Ecosistema , Pinus , Finlandia , Bosques , Israel
3.
Environ Sci Technol ; 55(10): 6613-6622, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33908766

RESUMEN

Trees and urban forests remove particulate matter (PM) from the air through the deposition of particles on the leaf surface, thus helping to improve air quality and reduce respiratory problems in urban areas. Leaf deposited PM, in turn, is either resuspended back into the atmosphere, washed off during rain events or transported to the ground with litterfall. The net amount of PM removed depends on crown and leaf characteristics, air pollution concentration, and weather conditions, such as wind speed and precipitation. Many existing deposition models, such as i-Tree Eco, calculate PM2.5 removal using a uniform deposition velocity function and resuspension rate for all tree species, which vary based on leaf area and wind speed. However, model results are seldom validated with experimental data. In this study, we compared i-Tree Eco calculations of PM2.5 deposition with fluxes determined by eddy covariance assessments (canopy scale) and particulate matter accumulated on leaves derived from measurements of vacuum/filtration technique as well as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (leaf scale). These investigations were carried out at the Capodimonte Royal Forest in Naples. Modeled and measured fluxes showed good overall agreement, demonstrating that net deposition mostly happened in the first part of the day when atmospheric PM concentration is higher, followed by high resuspension rates in the second part of the day, corresponding with increased wind speeds. The sensitivity analysis of the model parameters showed that a better representation of PM deposition fluxes could be achieved with adjusted deposition velocities. It is also likely that the standard assumption of a complete removal of particulate matter, after precipitation events that exceed the water storage capacity of the canopy (Ps), should be reconsidered to better account for specific leaf traits. These results represent the first validation of i-Tree Eco PM removal with experimental data and are a starting point for improving the model parametrization and the estimate of particulate matter removed by urban trees.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Quercus , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Bosques , Material Particulado/análisis , Hojas de la Planta/química , Árboles
4.
Oecologia ; 197(4): 939-956, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33835242

RESUMEN

Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.


Asunto(s)
Pinus , Compuestos Orgánicos Volátiles , Sequías , Plantones , Suelo
5.
Int J Biometeorol ; 65(2): 277-289, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33070207

RESUMEN

Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone). In conclusion, the presented model has demonstrated its ability to quantify two major ecosystem services (temperature mitigation and air pollution removal) consistently in dependence on meteorological and site conditions.


Asunto(s)
Ecosistema , Microclima , Ciudades , Bosques , Alemania , Humanos , Transpiración de Plantas , Agua
6.
Environ Sci Technol ; 51(11): 6120-6130, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28513175

RESUMEN

The potential of emissions from urban vegetation combined with anthropogenic emissions to produce ozone and particulate matter has long been recognized. This potential increases with rising temperatures and may lead to severe problems with air quality in densely populated areas during heat waves. Here, we investigate how heat waves affect emissions of volatile organic compounds from urban/suburban vegetation and corresponding ground-level ozone and particulate matter. We use the Weather Research and Forecasting Model with atmospheric chemistry (WRF-Chem) with emissions of volatile organic compounds (VOCs) from vegetation simulated with MEGAN to quantify some of these feedbacks in Berlin, Germany, during the heat wave in 2006. The highest ozone concentration observed during that period was ∼200 µg/m3 (∼101 ppbV). The model simulations indicate that the contribution of biogenic VOC emissions to ozone formation is lower in June (9-11%) and August (6-9%) than in July (17-20%). On particular days within the analyzed heat wave period, this contribution increases up to 60%. The actual contribution is expected to be even higher as the model underestimates isoprene concentrations over urban forests and parks by 0.6-1.4 ppbv. Our study demonstrates that biogenic VOCs can considerably enhance air pollution during heat waves. We emphasize the dual role of vegetation for air quality and human health in cities during warm seasons, which is removal and lessening versus enhancement of air pollution. The results of our study suggest that reduction of anthropogenic sources of NOx, VOCs, and PM, for example, reduction of the motorized vehicle fleet, would have to accompany urban tree planting campaigns to make them really beneficial for urban dwellers.


Asunto(s)
Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos , Berlin , Ciudades , Monitoreo del Ambiente , Alemania , Humanos , Ozono
7.
J Environ Manage ; 165: 243-252, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26439862

RESUMEN

Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater.


Asunto(s)
Cambio Climático , Bosques , Agua Subterránea/química , Nitratos/análisis , Austria , Clima , Monitoreo del Ambiente , Agricultura Forestal/métodos , Modelos Teóricos , Nitratos/química , Nitrógeno/análisis , Nitrógeno/química , Estaciones del Año , Suelo
8.
Plant Cell Environ ; 37(8): 1965-80, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24661098

RESUMEN

The lack of a mechanistic basis has hampered modelling isoprene emission responses to environmental drivers, in particular the simulation of isoprene emissions under different CO2 concentrations. Here, we advance previous semi-mechanistic model formulations by introducing a model that explicitly links electron availability for other purpose than carbon assimilation (or available energy for secondary metabolism processes; supply-constraint) and enzyme activity (capacity-constraint) to emissions. We furthermore investigate the sensitivity of the model to variations in photosynthetic and emission-specific parameters. By comparing species-specific simulations with experimental data, we demonstrate that differences in photosynthetic characteristics can explain inter-species differences in emissions. Interestingly, the seasonal development of emissions could also be explained to some degree by the change in energy supply from photosynthesis throughout the season. In addition, we show that the principal responses are not limited to isoprene but can be formulated to describe the emission of other light-dependent volatile species. The proposed model is suitable for implementation into regional and global models, particularly those that already provide species-specific photosynthesis estimates.


Asunto(s)
Hemiterpenos/biosíntesis , Modelos Teóricos , Fotosíntesis/fisiología , Fenómenos Fisiológicos de las Plantas , Butadienos , Dióxido de Carbono/química , Simulación por Computador , Ambiente , Luz , Pentanos , Hojas de la Planta/metabolismo , Metabolismo Secundario , Especificidad de la Especie
9.
New Phytol ; 195(3): 541-559, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22738087

RESUMEN

The leaves of many plants emit isoprene (2-methyl-1,3-butadiene) to the atmosphere, a process which has important ramifications for global and regional atmospheric chemistry. Quantitation of leaf isoprene emission and its response to environmental variation are described by empirically derived equations that replicate observed patterns, but have been linked only in some cases to known biochemical and physiological processes. Furthermore, models have been proposed from several independent laboratories, providing multiple approaches for prediction of emissions, but with little detail provided as to how contrasting models are related. In this review we provide an analysis as to how the most commonly used models have been validated, or not, on the basis of known biochemical and physiological processes. We also discuss the multiple approaches that have been used for modeling isoprene emission rate with an emphasis on identifying commonalities and contrasts among models, we correct some mathematical errors that have been propagated through the models, and we note previously unrecognized covariances within processes of the models. We come to the conclusion that the state of isoprene emission modeling remains highly empirical. Where possible, we identify gaps in our knowledge that have prevented us from achieving a greater mechanistic foundation for the models, and we discuss the insight and data that must be gained to fill those gaps.


Asunto(s)
Transferasas Alquil y Aril/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Hojas de la Planta/química , Algoritmos , Dióxido de Carbono/química , Sequías , Transporte de Electrón , Activación Enzimática , Modelos Biológicos , Fotones , Fotosíntesis , Hojas de la Planta/fisiología , Estaciones del Año , Temperatura
10.
New Phytol ; 194(1): 70-82, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22142198

RESUMEN

• Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions. • Neither the growth nor biomass yield of the PcISPS-RNAi poplars was impaired, and they were even temporarily enhanced compared with control poplars. Modelling of the annual carbon balances revealed a reduced carbon loss of 2.2% of the total gross primary production by the absence of isoprene emission, and a 6.9% enhanced net growth of PcISPS-RNAi poplars. However, the knock down in isoprene emission resulted in reduced susceptibility to fungal infection, whereas the attractiveness for herbivores was enhanced. • The present study promises potential for the use of non- or low-isoprene-emitting poplars for more sustainable and environmentally friendly biomass production, as reducing isoprene emission will presumably have positive effects on regional climate and air quality.


Asunto(s)
Contaminación del Aire/prevención & control , Atmósfera/química , Butadienos/análisis , Hemiterpenos/análisis , Pentanos/análisis , Populus/crecimiento & desarrollo , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Celulosa/metabolismo , Simulación por Computador , Cruzamientos Genéticos , Herbivoria/fisiología , Lignina/metabolismo , Fotosíntesis , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Populus/genética , Estaciones del Año , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Orgánicos Volátiles/análisis , Madera
11.
Sci Total Environ ; 844: 157131, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35798105

RESUMEN

The growing population in cities is causing a deterioration of air quality due to the emission of pollutants, causing serious health impacts. Trees and urban forests can contribute through the interception and removal of air pollutants such as particulate matter (PM). The dry deposition of PM by vegetation depends on air pollutant concentration, meteorological conditions, and specific leaf traits. Several studies explored the ability of different plant species to accumulate PM on leaf structures leading to the development of models to quantify the PM removal. The i-Tree Eco is the most used model to evaluate ecosystem services provided by urban trees. However, fine particulate matter (PM2.5) removal is still calculated with a poorly evaluated function of deposition velocity (which depends on wind speed and leaf area) without differentiating between tree species. Therefore, we present an improvement of the standard model calculation introducing a leaf trait index to distinguish the species effect on PM net removal. We also compared model results with measurements of deposited leaf PM by vacuum filtration. The index includes the effect of morphological and functional leaf characteristics of tree species using four parameters: leaf water storage, deposition velocity, resuspension rate and leaf washing capacity. Leaves of 11 common urban tree species were sampled in representative areas of the city of Ferrara (Italy) and at different times of the year from 2018 to 2021. This includes four deciduous broadleaf trees (Tilia cordata, Platanus acerifolia, Acer platanoides, Celtis australis), three evergreen broadleaf trees (Quercus ilex, Magnolia grandiflora, Nerium oleander), and four conifers (Thuja orientalis, Cedrus libani, Pinus pinaster, Picea abies). The results provide significant advancement in assessing PM removal using decision support tools such as models to properly select tree species for future urban tree planting programs aimed at improving air quality.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hojas de la Planta/química , Árboles/química
12.
Front Plant Sci ; 12: 715127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539705

RESUMEN

During drought, trees reduce water loss and hydraulic failure by closing their stomata, which also limits photosynthesis. Under severe drought stress, other acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible conductance loss. Here, we investigate two of them: the reversible impacts on the photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis, and the irreversible effect of premature leaf shedding. We integrate NSL and leaf shedding with a state-of-the-art tree hydraulic simulation model (SOX+) and parameterize them with example field measurements to demonstrate the stress-mitigating impact of these processes. We measured xylem vulnerability, transpiration, and leaf litter fall dynamics in Pinus sylvestris (L.) saplings grown for 54 days under severe dry-down. The observations showed that, once transpiration stopped, the rate of leaf shedding strongly increased until about 30% of leaf area was lost on average. We trained the SOX+ model with the observations and simulated changes in root-to-canopy conductance with and without including NSL and leaf shedding. Accounting for NSL improved model representation of transpiration, while model projections about root-to-canopy conductance loss were reduced by an overall 6%. Together, NSL and observed leaf shedding reduced projected losses in conductance by about 13%. In summary, the results highlight the importance of other than purely stomatal conductance-driven adjustments of drought resistance in Scots pine. Accounting for acclimation responses to drought, such as morphological (leaf shedding) and physiological (NSL) adjustments, has the potential to improve tree hydraulic simulation models, particularly when applied in predicting drought-induced tree mortality.

13.
Sci Rep ; 11(1): 22094, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764428

RESUMEN

We applied the process-based model, LandscapeDNDC, to estimate feed availability in the Sahelian and Sudanian agro-ecological zones of West Africa as a basis for calculating the regional Livestock Carrying Capacity (LCC). Comparison of the energy supply (S) from feed resources, including natural pasture, browse, and crop residues, with energy demand (D) of the livestock population for the period 1981-2020 allowed us to assess regional surpluses (S > D) or deficits (S < D) in feed availability. We show that in the last 40 years a large-scale shift from surplus to deficit has occurred. While during 1981-1990 only 27% of the area exceeded the LCC, it was 72% for the period 2011-2020. This was caused by a reduction in the total feed supply of ~ 8% and an increase in feed demand of ~ 37% per-decade, driven by climate change and increased livestock population, respectively. Overall, the S/D decreased from ~ 2.6 (surplus) in 1981 to ~ 0.5 (deficit) in 2019, with a north-south gradient of increasing S/D. As climate change continues and feed availability may likely further shrink, pastoralists either need to source external feed or significantly reduce livestock numbers to avoid overgrazing, land degradation, and any further conflicts for resources.

14.
Int J Biometeorol ; 54(1): 23-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19629535

RESUMEN

We investigated the water balances of two beech stands (Fagus sylvatica L.) on opposite slopes (NE, SW) of a narrow valley near Tuttlingen in the southern Swabian Jura, a low mountain range in Southwest Germany. Our analysis combines results from continuous measurements of forest meteorological variables significant to the forest water balance, stand transpiration (ST) estimates from sap flow measurements, and model simulations of microclimate and water fluxes. Two different forest hydrological models (DNDC and BROOK90) were tested for their suitability to represent the particular sites. The investigation covers the years 2001-2007. Central aims were (1) to evaluate meteorological simulations of variables below the forest canopy, (2) to evaluate ST, (3) to quantify annual water fluxes for both beech stands using the evaluated hydrological models, and (4) to analyse the model simulations with regard to assumptions inherent in the respective model. Overall, both models were very well able to reproduce the observed dynamics of the soil water content in the uppermost 30 cm. However, the degree of fit depended on the year and season. The comparison of experimentally determined ST within the beech stand on the NE-slope during the growing season of 2007 with simulated transpiration did not yield a reliable statistical relationship. The simulation of water fluxes for the beech stand on the NE- and SW-slopes showed similar results for vegetation-related fluxes with both models, but different with respect to runoff and percolation flows. Overall, the higher evaporation demand on the warmer SW-slope did not lead to a significantly increased drought stress for the vegetation but was reflected mainly in decreased water loss from the system. This finding is discussed with regard to potential climate change and its impact on beech growth.


Asunto(s)
Clima , Fagus/fisiología , Modelos Biológicos , Árboles/fisiología , Agua/metabolismo , Simulación por Computador , Alemania , Transpiración de Plantas
15.
Front Plant Sci ; 11: 549913, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117411

RESUMEN

Nitrogen oxides (NOx), mainly a mixture of nitric oxide (NO) and nitrogen dioxide (NO2), are formed by the reaction of nitrogen and oxygen compounds in the air as a result of combustion processes and traffic. Both deposit into leaves via stomata, which on the one hand benefits air quality and on the other hand provides an additional source of nitrogen for plants. In this study, we first determined the NO and NO2 specific deposition velocities based on projected leaf area (sV d) using a branch enclosure system. We studied four tree species that are regarded as suitable to be planted under predicted future urban climate conditions: Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica and Ostrya carpinifolia. The NO and NO2 sVd were found similar in all tree species. Second, in order to confirm NO metabolization, we fumigated plants with 15NO and quantified the incorporation of 15N in leaf materials of these trees and four additional urban tree species (Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia henryana) under controlled environmental conditions. Based on these 15N-labeling experiments, A. glutinosa showed the most effective incorporation of 15NO. Third, we tried to elucidate the mechanism of metabolization. Therefore, we generated transgenic poplars overexpressing Arabidopsis thaliana phytoglobin 1 or 2. Phytoglobins are known to metabolize NO to nitrate in the presence of oxygen. The 15N uptake in phytoglobin-overexpressing poplars was significantly increased compared to wild-type trees, demonstrating that the NO uptake is enzymatically controlled besides stomatal dependence. In order to upscale the results and to investigate if a trade-off exists between air pollution removal and survival probability under future climate conditions, we have additionally carried out a modeling exercise of NO and NO2 deposition for the area of central Berlin. If the actually dominant deciduous tree species (Acer platanoides, Tilia cordata, Fagus sylvatica, Quercus robur) would be replaced by the species suggested for future conditions, the total annual NO and NO2 deposition in the modeled urban area would hardly change, indicating that the service of air pollution removal would not be degraded. These results may help selecting urban tree species in future greening programs.

16.
Oecologia ; 160(2): 213-23, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19219456

RESUMEN

In many ecosystems drought cycles are common during the growing season but their impact on volatile monoterpene emissions is unclear. Therefore, we aimed to develop and evaluate a process-based modelling approach to explore the explanatory power of likely mechanisms. The biochemically based isoprene and monoterpene emission model SIM-BIM2 has been modified and linked to a canopy model and a soil water balance model. Simulations are carried out for Quercus ilex forest sites and results are compared to measured soil water, photosynthesis, terpene-synthase activity, and monoterpene emission rates. Finally, the coupled model system is used to estimate the annual drought impact on photosynthesis and emission. The combined and adjusted vegetation model was able to simulate photosynthesis and monoterpene emission under dry and irrigated conditions with an R(2) of 0.74 and 0.52, respectively. We estimated an annual reduction of monoterpene emission of 67% for the extended and severe drought period in 2006 in the investigated Mediterranean ecosystem. It is concluded that process-based ecosystem models can provide a useful tool to investigate the involved mechanisms and to quantify the importance of specific environmental constraints.


Asunto(s)
Sequías , Modelos Biológicos , Monoterpenos/metabolismo , Quercus/metabolismo , Árboles/metabolismo , Dióxido de Carbono/metabolismo , Simulación por Computador , Francia , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Agua/metabolismo
17.
Tree Physiol ; 39(8): 1285-1299, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30924906

RESUMEN

Plant responses to drought and heat stress have been extensively studied, whereas post-stress recovery, which is fundamental to understanding stress resilience, has received much less attention. Here, we present a conceptual stress-recovery framework with respect to hydraulic and metabolic functioning in woody plants. We further synthesize results from controlled experimental studies following heat or drought events and highlight underlying mechanisms that drive post-stress recovery. We find that the pace of recovery differs among physiological processes. Leaf water potential and abscisic acid concentration typically recover within few days upon rewetting, while leaf gas exchange-related variables lag behind. Under increased drought severity as indicated by a loss in xylem hydraulic conductance, the time for stomatal conductance recovery increases markedly. Following heat stress release, a similar delay in leaf gas exchange recovery has been observed, but the reasons are most likely a slow reversal of photosynthetic impairment and other temperature-related leaf damages, which typically manifest at temperatures above 40 °C. Based thereon, we suggest that recovery of gas exchange is fast following mild stress, while recovery is slow and reliant on the efficiency of repair and regrowth when stress results in functional impairment and damage to critical plant processes. We further propose that increasing stress severity, particular after critical stress levels have been reached, increases the carbon cost involved in reestablishing functionality. This concept can guide future experimental research and provides a base for modeling post-stress recovery of carbon and water relations in trees.


Asunto(s)
Sequías , Agua , Carbono , Hojas de la Planta , Xilema
18.
Tree Physiol ; 39(12): 1937-1960, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748793

RESUMEN

Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.


Asunto(s)
Cambio Climático , Ecosistema , Carbono , Ciclo del Carbono , Bosques
19.
Environ Pollut ; 237: 205-217, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29486454

RESUMEN

Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha-1 yr-1). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH. reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80-130 µg g-1 DW h-1), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH. reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH. reactivity per weight unit of biomass produced, qualified the C4-perennial grass Miscanthus as a superior source of future bioenergy production.


Asunto(s)
Contaminantes Atmosféricos/análisis , Fuentes de Energía Bioeléctrica , Nitrógeno/análisis , Compuestos Orgánicos Volátiles/análisis , Biomasa , Butadienos , Carbono , Productos Agrícolas/efectos de los fármacos , Hemiterpenos , Ozono , Pentanos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Poaceae/fisiología , Salix/fisiología , Árboles/efectos de los fármacos
20.
Tree Physiol ; 26(11): 1391-403, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16877324

RESUMEN

The broad range in plant responses to chronic O(3) exposure compels a search for integrative, underlying principles. One such approach is the unifying theory proposed by Reich (1987), which combines the O(3) response of contrasting physiognomic classes of plants on the basis of their intrinsic leaf diffusive conductance and, hence, capacity for O(3) uptake. Physiognomic classes differ in the proportional decline in photosynthesis and growth when compared on the basis of cumulative O(3) exposure per unit time, but converge when compared on the basis of O(3) uptake per unit time or cumulative O(3) uptake over the entire lifetime of the leaf. The theory is based on observations on a large number of contrasting plant species, relying primarily on studies of juvenile trees subjected to short-term O(3) exposure. To test the applicability of the unifying theory to mature trees, broadleaf deciduous European beech (Fagus sylvatica L.) and the evergreen conifer Norway spruce (Picea abies (L.) Karst.) in a mature mixed stand were exposed to either ambient air (control) or air with twice the ambient O(3) concentration delivered into the canopy by means of a free-air fumigation system. We accounted for differences in growing season length, leaf longevity and O(3)-related effects on leaf diffusive conductance in determining total O(3) uptake over the lifetime of the leaf. On this basis, Norway spruce needles required 5 years to take up as much O(3) as did beech leaves in one growing season. The core of the unifying theory on O(3) sensitivity was substantiated in relation to O(3) exposure and uptake. However, contrary to the unifying theory, which was formulated on the basis of results with juvenile trees, the O(3) response of mature trees in a natural stand was more complex. The increased complexity was attributed to additional environmental stressors, stress compensation at the whole-tree level, and differential O(3) sensitivities of leaves according to age class and position within the canopy. Contrary to the theory, photosynthesis was no less sensitive to O(3) in Norway spruce than that of beech, and was reduced in the twice-ambient O(3) regime in the first year of exposure.


Asunto(s)
Fagus/fisiología , Consumo de Oxígeno/efectos de los fármacos , Ozono/toxicidad , Picea/fisiología , Fagus/efectos de los fármacos , Alemania , Luz , Picea/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Sistema Solar , Árboles/efectos de los fármacos , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA