Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 90(3): 1151-1165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093746

RESUMEN

PURPOSE: We aimed to compare multiple MRI parameters, including relaxation rates ( R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging ( S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS: Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS: Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. In T 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures, R 2 $$ {R}_2 $$ and R 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR and R 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION: R 2 $$ {R}_2 $$ , R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.


Asunto(s)
Quistes , Imágenes de Resonancia Magnética Multiparamétrica , Enfermedades Renales Poliquísticas , Ratones , Animales , Enfermedades Renales Poliquísticas/diagnóstico por imagen , Enfermedades Renales Poliquísticas/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Quistes/patología , Modelos Animales de Enfermedad
2.
Am J Physiol Renal Physiol ; 320(1): F61-F73, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196323

RESUMEN

Oxidative stress is a key concept in basic, translational, and clinical research to understand the pathophysiology of various disorders, including cardiovascular and renal diseases. Although attempts to directly reduce oxidative stress with redox-active substances have until now largely failed to prove clinical benefit, indirect approaches to combat oxidative stress enzymatically have gained further attention as potential therapeutic strategies. The pantetheinase Vanin-1 is expressed on kidney proximal tubular cells, and its reaction product cysteamine is described to negatively affect redox homeostasis by inhibiting the replenishment of cellular antioxidative glutathione stores. Vanin-1-deficient mice were shown to be protected against oxidative stress damage. The aim of this study was to elucidate whether pharmacological inhibition of Vanin-1 protects mice from oxidative stress-related acute or chronic kidney injury as well. By studying renal ischemia-reperfusion injury in Col4α3-/- (Alport syndrome) mice and in vitro hypoxia-reoxygenation in human proximal tubular cells we found that treatment with a selective and potent Vanin-1 inhibitor resulted in ample inhibition of enzymatic activity in vitro and in vivo. However, surrogate parameters of metabolic and redox homeostasis were only partially and insufficiently affected. Consequently, apoptosis and reactive oxygen species level in tubular cells as well as overall kidney function and fibrotic processes were not improved by Vanin-1 inhibition. We thus conclude that Vanin-1 functionality in the context of cardiovascular diseases needs further investigation and the biological relevance of pharmacological Vanin-1 inhibition for the treatment of kidney diseases remains to be proven.


Asunto(s)
Lesión Renal Aguda/prevención & control , Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Nefritis Hereditaria/prevención & control , Estrés Oxidativo/efectos de los fármacos , Insuficiencia Renal Crónica/prevención & control , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autoantígenos/genética , Autoantígenos/metabolismo , Línea Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacocinética , Fibrosis , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Hereditaria/enzimología , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Insuficiencia Renal Crónica/enzimología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/enzimología , Daño por Reperfusión/genética , Daño por Reperfusión/patología
3.
Am J Nephrol ; 52(7): 588-601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34515038

RESUMEN

INTRODUCTION: The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in chronic kidney disease patients with type 2 diabetes. Precise molecular mechanisms responsible for these benefits are incompletely understood. Here, we investigated potential direct anti-fibrotic effects and mechanisms of nonsteroidal MR antagonism by finerenone or SGLT2 inhibition by empagliflozin in 2 relevant mouse kidney fibrosis models: unilateral ureter obstruction and sub-chronic ischemia reperfusion injury. METHODS: Kidney fibrosis was induced in mice via unilateral ureteral obstruction or ischemia. In a series of experiments, mice were treated orally with the MR antagonist finerenone (3 or 10 mg/kg), the SGLT2 inhibitor empagliflozin (10 or 30 mg/kg), or in a direct comparison of both drugs. Interstitial myofibroblast accumulation was quantified via alpha-smooth muscle actin and interstitial collagen deposition via Sirius Red/Fast Green staining in both models. Secondary analyses included the assessment of inflammatory cells, kidney mRNA expression of fibrotic markers as well as functional parameters (serum creatinine and albuminuria) in the ischemic model. Blood pressure was measured via telemetry in healthy conscious compound-treated animals. RESULTS: Finerenone dose-dependently decreased pathological myofibroblast accumulation and collagen deposition with no effects on systemic blood pressure and inflammatory markers in the tested dose range. Reduced kidney fibrosis was paralleled by reduced kidney plasminogen activator inhibitor-1 (PAI-1) and naked cuticle 2 (NKD2) expression in finerenone-treated mice. In contrast, treatment with empagliflozin strongly increased urinary glucose excretion in both models and reduced ischemia-induced albuminuria but had no effects on kidney myofibroblasts or collagen deposition. DISCUSSION/CONCLUSION: Finerenone has direct anti-fibrotic properties resulting in reduced myofibroblast and collagen deposition accompanied by a reduction in renal PAI-1 and NKD2 expression in mouse models of progressive kidney fibrosis at blood pressure-independent dosages.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Riñón/patología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Naftiridinas/uso terapéutico , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Albuminuria/tratamiento farmacológico , Animales , Compuestos de Bencidrilo/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Colágeno/genética , Colágeno/metabolismo , Creatinina/sangre , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica/efectos de los fármacos , Glucósidos/uso terapéutico , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Linfocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Monocitos/patología , Miofibroblastos/patología , Naftiridinas/farmacología , ARN Mensajero/metabolismo , Daño por Reperfusión/complicaciones , Serpina E2/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Obstrucción Ureteral/complicaciones
4.
Anal Biochem ; 630: 114322, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343482

RESUMEN

Autotaxin (ATX) plays an important role in (patho-)physiological lysophosphatidic acid (LPA) signaling. Here we describe the establishment of novel cell-based ATX assay formats. ATX-mediated LPA generation is detected by using a stable LPA receptor reporter cell line. In a first assay variant, ATX-mediated LPA generation is started in the absence of cells and the reaction mix is transferred to the reporter cells after stopping the reaction (two-tube assay). In a second assay variant, ATX is added to the reporter cells expressing the known autotaxin binding partners integrin ß1, integrin ß3 and the LPA receptor 1. LPA generation is started in the presence of cells and is detected in real-time (one-tube assay). Structurally diverse ATX inhibitors with different binding modes were characterized in both cell-based assay variants and were also tested in the well-established biochemical choline release assay. ATX inhibitors displayed similar potencies, regardless if the assay was performed in the absence or presence of cells, and comparable results were obtained in all three assay formats. In summary, our novel cell-based ATX assay formats are well-suited for sensitive detection of enzyme activity as well as for the characterization of ATX inhibitors in the presence and absence of cells.


Asunto(s)
Hidrolasas Diéster Fosfóricas/análisis , Células Cultivadas , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/metabolismo
5.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578942

RESUMEN

The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Descubrimiento de Drogas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Modelos Moleculares , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/química
6.
Handb Exp Pharmacol ; 238: 339-357, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26721676

RESUMEN

Cyclic nucleotide monophosphates (cNMPs) typify the archetype second messenger in living cells and serve as molecular switches with broad functionality. cAMP and cGMP are the best-described cNMPs; however, there is a growing body of evidence indicating that also cCMP and cUMP play a substantial role in signal transduction. Despite research efforts, to date, relatively little is known about the biology of these noncanonical cNMPs, which is due, at least in part, to methodological issues in the past entailing setbacks of the entire field. Only recently, with the use of state-of-the-art techniques, it was possible to revive noncanonical cNMP research. While high-sensitive detection methods disclosed relevant levels of cCMP and cUMP in mammalian cells, knowledge about the biological effectors and their physiological interplay is still incomplete. Holistic biophysical readouts capture cell responses label-free and in an unbiased fashion with the advantage to detect concealed aspects of cell signaling that are arduous to access via traditional biochemical assay approaches. In this chapter, we introduce the dynamic mass redistribution (DMR) technology to explore cell signaling beyond established receptor-controlled mechanisms. Both common and distinctive features in the signaling structure of cCMP and cUMP were identified. Moreover, the integrated response of whole live cells revealed a hitherto undisclosed additional effector of the noncanonical cNMPs. Future studies will show how holistic methods will become integrated into the methodological arsenal of contemporary cNMP research.


Asunto(s)
Bioensayo/métodos , Nucleótidos Cíclicos/metabolismo , Sistemas de Mensajero Secundario , Animales , Células HEK293 , Humanos , Cinética
7.
Mol Pharmacol ; 90(4): 447-59, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27458145

RESUMEN

Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.


Asunto(s)
Receptores Frizzled/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas Wnt/farmacología , Proteínas Dishevelled/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Receptores Frizzled/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Br J Nutr ; 113(11): 1677-88, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25916176

RESUMEN

Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mechanisms of action are mostly unclear. Fatty acids may contribute by acting as precursors of signalling molecules or by direct activity on receptors. The medium- and long-chain NEFA receptor FFA1 (free fatty acid receptor 1, previously known as GPR40) has been linked to enhancement of glucose-stimulated insulin secretion, whereas FFA4 (free fatty acid receptor 4, previously known as GPR120) has been associated with insulin-sensitising and anti-inflammatory effects, and both receptors are reported to protect pancreatic islets and promote secretion of appetite and glucose-regulating hormones. Hypothesising that FFA1 and FFA4 mediate therapeutic effects of dietary components, we screened a broad selection of NEFA on FFA1 and FFA4 and characterised active compounds in concentration-response curves. Of the screened compounds, pinolenic acid, a constituent of pine nut oil, was identified as a relatively potent and efficacious dual FFA1/FFA4 agonist, and its suitability for further studies was confirmed by additional in vitro characterisation. Pine nut oil and free and esterified pure pinolenic acid were tested in an acute glucose tolerance test in mice. Pine nut oil showed a moderately but significantly improved glucose tolerance compared with maize oil. Pure pinolenic acid or ethyl ester gave robust and highly significant improvements of glucose tolerance. In conclusion, the present results indicate that pinolenic acid is a comparatively potent and efficacious dual FFA1/FFA4 agonist that exerts antidiabetic effects in an acute mouse model. The compound thus deserves attention as a potential active dietary ingredient to prevent or counteract metabolic diseases.


Asunto(s)
Grasas de la Dieta/farmacología , Ácidos Linolénicos/farmacología , Síndrome Metabólico/prevención & control , Receptores Acoplados a Proteínas G/genética , Animales , Diabetes Mellitus Tipo 2/prevención & control , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nueces/química , Pinus , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
9.
Diabetologia ; 57(4): 776-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463963

RESUMEN

AIMS/HYPOTHESIS: Adequate evaluation of protein expression is a crucial prerequisite for functional studies. Commonly used strategies comprise detection of proteins by specific antibodies using western blotting and immunohistochemical staining, or detection of mRNA by in situ hybridisation and RT-PCR. We evaluated the tools for the detection of free fatty acid receptor 1 (FFAR1) expression. METHODS: Commercially available antibody preparations were used to detect endogenous expression of the FFAR1 receptor and this was compared with cell preparations deficient or overexpressing the mouse or human receptor. Concentrations of mRNA were evaluated by RT-PCR. RESULTS: All insulin-secreting cells, INS-1E, Min6 and mouse islets showed specific expression of Ffar1 at the mRNA level. However, none of the commercially available antibodies specifically detected rat, mouse or human FFAR1. CONCLUSIONS/INTERPRETATION: Proper positive and negative controls are an important prerequisite for the evaluation of FFAR1 expression.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Western Blotting , Línea Celular , Humanos , Técnicas In Vitro , Islotes Pancreáticos/metabolismo , Ratones , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Biochem Biophys Res Commun ; 451(4): 497-502, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25108158

RESUMEN

In addition to the well-known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. The Pseudomonas aeruginosa toxin ExoY massively increases cGMP and cUMP in cells, whereas the Bordetella pertussis toxin CyaA increases cAMP and, to a lesser extent, cCMP. To mimic and dissect toxin effects, we synthesized cNMP-acetoxymethylesters as prodrugs. cNMP-AMs rapidly and effectively released the corresponding cNMP in cells. The combination of cGMP-AM plus cUMP-AM mimicked cytotoxicity of ExoY. cUMP-AM and cGMP-AM differentially activated gene expression. Certain cCMP and cUMP effects were independent of the known cNMP effectors protein kinases A and G and guanine nucleotide exchange factor Epac. In conclusion, cNMP-AMs are useful tools to mimic and dissect bacterial nucleotidyl cyclase toxin effects.


Asunto(s)
Toxinas Bacterianas/farmacología , GMP Cíclico/análogos & derivados , Nucleótidos Cíclicos/farmacología , Uridina Monofosfato/farmacología , Toxina de Adenilato Ciclasa/farmacología , Animales , Proteínas Bacterianas/farmacología , GMP Cíclico/farmacología , Glucosiltransferasas/farmacología , Ratas , Sistemas de Mensajero Secundario/fisiología , Células Tumorales Cultivadas
11.
FASEB J ; 26(12): 4951-65, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22919070

RESUMEN

When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC(50) values for inhibition of cAMP, 5.83 ± 0.11; Ca(2+) mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.


Asunto(s)
Ácidos Grasos/metabolismo , Mutación , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/genética , Arrestinas/metabolismo , Sitios de Unión/genética , Bovinos , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos/química , Ácidos Grasos/farmacología , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Relación Estructura-Actividad , beta-Arrestinas
12.
Cell Rep Med ; 4(4): 100992, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37023747

RESUMEN

Diabetic kidney disease (DKD) is the most common cause of renal failure. Therapeutics development is hampered by our incomplete understanding of animal models on a cellular level. We show that ZSF1 rats recapitulate human DKD on a phenotypic and transcriptomic level. Tensor decomposition prioritizes proximal tubule (PT) and stroma as phenotype-relevant cell types exhibiting a continuous lineage relationship. As DKD features endothelial dysfunction, oxidative stress, and nitric oxide depletion, soluble guanylate cyclase (sGC) is a promising DKD drug target. sGC expression is specifically enriched in PT and stroma. In ZSF1 rats, pharmacological sGC activation confers considerable benefits over stimulation and is mechanistically related to improved oxidative stress regulation, resulting in enhanced downstream cGMP effects. Finally, we define sGC gene co-expression modules, which allow stratification of human kidney samples by DKD prevalence and disease-relevant measures such as kidney function, proteinuria, and fibrosis, underscoring the relevance of the sGC pathway to patients.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Ratas , Animales , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/farmacología , Guanilil Ciclasa Soluble/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/farmacología , Riñón/metabolismo , Fibrosis
13.
J Biol Chem ; 286(14): 11890-4, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21339298

RESUMEN

Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic ß-cells of wild type but not FFA1-/- knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes.


Asunto(s)
Insulina/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Calcio/metabolismo , Línea Celular , Línea Celular Tumoral , Humanos , Ratas , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Biol Chem ; 286(12): 10628-40, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220428

RESUMEN

Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [(35)S]guanosine 5'-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.


Asunto(s)
Propionatos/química , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Células HEK293 , Humanos , Ligandos , Propionatos/metabolismo , Propionatos/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
15.
Cancer Rep (Hoboken) ; 5(9): e1566, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34791835

RESUMEN

BACKGROUND: CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types. Previous studies have shown that CD148 dephosphorylates growth factor receptors and their signaling molecules, including EGFR and ERK1/2, and negatively regulates cancer cell growth. Furthermore, research of clinical patients has shown that highly linked CD148 gene polymorphisms, Gln276Pro (Q276P) and Arg326Gln (R326Q), are associated with an increased risk of several types of cancer. However, the biological effects of these missense mutations have not been studied. AIM: We aimed to determine the biological effects of CD148 Q276P/R326Q mutations in cancer cell proliferation and growth factor signaling, with emphasis on EGFR signaling. METHODS: CD148 forms, wild-type (WT) or Q276P/R326Q, were retrovirally introduced into A431D epidermoid carcinoma cells that lacks CD148 expression. The stable cells that express comparable levels of CD148 were sorted by flow cytometry. A431D cells infected with empty retrovirus was used as a control. CD148 localization, cell proliferation rate, EGFR signaling, and the response to thrombospondin-1 (TSP1), a CD148 ligand, were assessed by immunostaining, cell proliferation assay, enzyme-linked immunosorbent assay, and Western blotting. RESULTS: Both CD148 forms (WT, Q276P/R326Q) were distributed to cell surface and all three cell lines expressed same level of EGFR. Compared to control cells, the A431D cells that express CD148 forms showed significantly lower cell proliferation rates. EGF-induced EGFR and ERK1/2 phosphorylation as well as cell proliferation were also significantly reduced in these cells. Furthermore, TSP1 inhibited cell proliferation in CD148 (WT, Q276P/R326Q)-expressing A431D cells, while it showed no effects in control cells. However, significant differences were not observed between CD148 WT and Q276P/R326Q cells. CONCLUSION: Our data demonstrates that Q276P/R326Q mutations do not have major effects on TSP1-CD148 interaction as well as on CD148's cellular localization and activity to inhibit EGFR signaling and cell proliferation.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Receptores ErbB/genética , Humanos , Polimorfismo Genético , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo
16.
J Leukoc Biol ; 109(4): 741-751, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32803826

RESUMEN

The G protein-coupled free fatty acid receptor 2 (FFA2R) is highly expressed on neutrophils and was previously described to regulate neutrophil activation. Allosteric targeting of G protein-coupled receptors (GPCRs) is increasingly explored to create distinct pharmacology compared to endogenous, orthosteric ligands. The consequence of allosteric versus orthosteric FFA2R activation for neutrophil response, however, is currently largely elusive. Here, different FFA2R desensitization profiles in human neutrophils following allosteric or orthosteric activation are reported. Using a set of neutrophil functional assays to measure calcium flux, pERK1/2, chemotaxis, cellular degranulation, and oxidative burst together with holistic and pathway-unbiased whole cell sensing based on dynamic mass redistribution, it is found that the synthetic positive allosteric modulator agonist 4-CMTB potently activates neutrophils and simultaneously alters FFA2R responsiveness toward the endogenous, orthosteric agonist propionic acid (C3) after homologous and heterologous receptor desensitization. Stimulation with C3 or the hierarchically superior chemokine receptor activator IL-8 led to strong FFA2R desensitization and rendered neutrophils unresponsive toward repeated stimulation with C3. In contrast, stimulation with allosteric 4-CMTB engaged a distinct composition of signaling pathways as compared to orthosteric receptor activation and was able to activate neutrophils that underwent homologous and heterologous desensitization with C3 and IL-8, respectively. Moreover, allosteric FFA2R activation could re-sensitize FFA2 toward the endogenous agonist C3 after homologous and heterologous desensitization. Given the fact that receptor desensitization is critical in neutrophils to sense and adapt to their current environment, these findings are expected to be useful for the discovery of novel pharmacological mechanisms to modulate neutrophil responsiveness therapeutically.


Asunto(s)
Neutrófilos/metabolismo , Receptores de Superficie Celular/metabolismo , Regulación Alostérica/efectos de los fármacos , Calcio/metabolismo , Quimiotaxis/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Activación Neutrófila/efectos de los fármacos , Neutrófilos/química , Neutrófilos/efectos de los fármacos , Propionatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 11(1): 13251, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168267

RESUMEN

Mononuclear phagocytes (MNPs) participate in inflammation and repair after kidney injury, reflecting their complex nature. Dissection into refined functional subunits has been challenging and would benefit understanding of renal pathologies. Flow cytometric approaches are limited to classifications of either different MNP subsets or functional state. We sought to combine these two dimensions in one protocol that considers functional heterogeneity in each MNP subset. We identified five distinct renal MNP subsets based on a previously described strategy. In vitro polarization of bone marrow-derived macrophages (BMDM) into M1- and M2-like cells suggested functional distinction of CD86 + MHCII + CD206- and CD206 + cells. Combination of both distinction methods identified CD86 + MHCII + CD206- and CD206 + cells in all five MNP subsets, revealing their heterologous nature. Our approach revealed that MNP composition and their functional segmentation varied between different mouse models of kidney injury and, moreover, was dynamically regulated in a time-dependent manner. CD206 + cells from three analyzed MNP subsets had a higher ex vivo phagocytic capacity than CD86 + MHCII + CD206- counterparts, indicating functional uniqueness of each subset. In conclusion, our novel flow cytometric approach refines insights into renal MNP heterogeneity and therefore could benefit mechanistic understanding of renal pathology.


Asunto(s)
Citometría de Flujo/métodos , Fagocitos/metabolismo , Animales , Antígenos de Superficie , Antígeno B7-2/inmunología , Genes MHC Clase II/inmunología , Riñón/lesiones , Riñón/patología , Lectinas Tipo C/inmunología , Macrófagos/clasificación , Macrófagos/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fagocitos/clasificación , Receptores de Superficie Celular/inmunología
18.
Thromb Haemost ; 118(10): 1803-1814, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30235481

RESUMEN

Heparanase (HPSE) is an endo-ß-D-glucuronidase that cleaves heparan sulphate (HS) chains of proteoglycans (HSPGs). Besides a remodelling of the extracellular matrix, HPSE increases the bioavailability of pro-angiogenic mediators, such as HS-associated vascular endothelial growth factor (VEGF), thereby contributing to metastatic niche formation. Notably, HPSE also induces release of VEGF from tumour cells independent of its enzymatic activity, but the underlying molecular mechanisms remain unresolved. We found that exogenous addition of latent HPSE stimulates VEGF release from human MV3 melanoma cells. The same effect was noted upon direct stimulation of thrombin receptor (protease-activated receptor 1 [PAR-1]) by Thrombin Receptor Activator Peptide 6 (TRAP-6). The matricellular ligand cysteine-rich 61 protein (Cyr61) was identified as pathway component since Cyr61 knockdown in MV3 cells abolished the VEGF release by TRAP-6 and HPSE. Since both TRAP-6 and HPSE mediated an up-regulation of phosphorylated focal adhesion kinase, which could be blocked by antagonizing PAR-1, we postulated a crosstalk between latent HPSE and PAR-1 in promoting pro-angiogenic pathways. To test this hypothesis at a molecular level, we applied dynamic mass redistribution (DMR) technique measuring intracellular mass relocation as consequence of direct receptor activation. Indeed, latent HPSE evoked a concentration-dependent DMR signal in MV3 cells as TRAP-6 did. Both could be modulated by targeting G-protein receptor signalling in general or by the PAR-1 inhibitor RWJ 56110. Using cells devoid of cell surface HS synthesis, we could confirm HPSE effects on PAR-1, independent of HSPG involvement. These data indicate, for the first time, a crosstalk between latent HPSE, thrombin receptor activation and G-protein signalling in general.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Glucuronidasa/metabolismo , Heparitina Sulfato/metabolismo , Melanoma/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor PAR-1/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Proteína 61 Rica en Cisteína/genética , Humanos , Melanoma/patología , Metástasis de la Neoplasia , ARN Interferente Pequeño/genética , Receptor Cross-Talk , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
ACS Omega ; 3(11): 14814-14823, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30555990

RESUMEN

Dynamic mass redistribution (DMR) and cellular dielectric spectroscopy (CDS) are label-free biosensor technologies that capture real-time integrated cellular responses upon exposure to extra- and intracellular stimuli. They register signaling routes that are accompanied by cell shape changes and/or molecular movement of cells proximal to the biosensor to which they are attached. Here, we report the unexpected observation that robust DMR and CDS signatures are also elicited upon direct stimulation of G protein-activated inwardly rectifying potassium (GIRK) channels, which are involved in the regulation of excitability in the heart and brain. Using ML297, a small-molecule GIRK activator, along with channel blockers and cytoskeletal network inhibitors, we found that GIRK activation exerts its effects on cell shape by a mechanism which depends on actin but not the microtubule network. Because label-free real-time biosensing (i) quantitatively determines concentration dependency of GIRK activators, (ii) accurately assesses the impact of GIRK channel blockers, (iii) is high throughput-compatible, and (iv) visualizes previously unknown cellular consequences downstream of direct GIRK activation, we do not only provide a novel experimental strategy for identification of GIRK ligands but also an entirely new angle to probe GIRK (ligand) biology. We envision that DMR and CDS may add to the repertoire of technologies for systematic exploitation of ion channel function and, in turn, to the identification of novel GIRK ligands in order to treat cardiovascular and neurological disorders.

20.
Nat Commun ; 9(1): 341, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362459

RESUMEN

G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of "zero functional G" at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking ß-arrestins ("zero arrestin"), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at "zero functional G": arrestin recruitment and internalization, but-unexpectedly-complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2.


Asunto(s)
Proteínas de Unión al GTP/genética , Sistema de Señalización de MAP Quinasas , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Sistemas CRISPR-Cas , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Proteínas de Unión al GTP/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Fosforilación , Transducción de Señal , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA