Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Carcinog ; 59(7): 724-735, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333465

RESUMEN

The immunosuppressive microenvironment in solid tumors is thought to form a barrier to the entry and efficacy of cell-based therapies such as chimeric antigen receptor (CAR) T cells. Combining CAR T cell therapy with checkpoint inhibitors has been demonstrated to oppose immune escape mechanisms in solid tumors and augment antitumor efficacy. We evaluated PD-1/PD-L1 signaling capacity and the impact of an inhibitor of this checkpoint axis in an in vitro system for cancer cell challenge, the coculture of L1CAM-specific CAR T cells with neuroblastoma cell lines. Fluorescence-activated cell sorting-based analyses and luciferase reporter assays were used to assess PD-1/PD-L1 expression on CAR T and tumor cells as well as CAR T cell ability to kill neuroblastoma cells. Coculturing neuroblastoma cell lines with L1CAM-CAR T cells upregulated PD-L1 expression on neuroblastoma cells, confirming adaptive immune resistance. Exposure to neuroblastoma cells also upregulated the expression of the PD-1/PD-L1 axis in CAR T cells. The checkpoint inhibitor, nivolumab, enhanced L1CAM-CAR T cell-directed killing. However, nivolumab-enhanced L1CAM-CAR T cell killing did not strictly correlate with PD-L1 expression on neuroblastoma cells. In fact, checkpoint inhibitor success relied on strong PD-1/PD-L1 axis expression in the CAR T cells, which in turn depended on costimulatory domains within the CAR construct, and more importantly, on the subset of T cells selected for CAR T cell generation. Thus, T cell subset selection for CAR T cell generation and CAR T cell prescreening for PD-1/PD-L1 expression could help determine when combination therapy with checkpoint inhibitors could improve treatment efficacy.


Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/fisiología
2.
BMC Cancer ; 19(1): 895, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500597

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. METHODS: CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. RESULTS: All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. CONCLUSION: Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Gangliósidos/inmunología , Molécula L1 de Adhesión de Célula Nerviosa/inmunología , Receptores Quiméricos de Antígenos , Retinoblastoma/terapia , Linfocitos T/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Citotoxicidad Inmunológica , Femenino , Humanos , Lactante , Masculino , Retinoblastoma/inmunología , Retinoblastoma/metabolismo , Estudios Retrospectivos , Linfocitos T/inmunología
3.
Nat Commun ; 14(1): 3936, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402719

RESUMEN

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Asunto(s)
Neuroblastoma , ARN Circular , Niño , Humanos , ARN Circular/genética , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Línea Celular Tumoral , ARN/genética , ARN/metabolismo , Neuroblastoma/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Front Immunol ; 13: 1023206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700232

RESUMEN

Introduction: Despite advances in treating high-risk neuroblastoma, 50-60% of patients still suffer relapse, necessitating new treatment options. Bispecific trifunctional antibodies (trAbs) are a promising new class of immunotherapy. TrAbs are heterodimeric IgG-like molecules that bind CD3 and a tumor-associated antigen simultaneously, whereby inducing a TCR-independent anti-cancer T cell response. Moreover, via their functional Fc region they recruit and activate cells of the innate immune system like antigen-presenting cells potentially enhancing induction of adaptive tumor-specific immune responses. Methods: We used the SUREK trAb, which is bispecific for GD2 and murine Cd3. Tumor-blind trAb and the monoclonal ch14.18 antibody were used as controls. A co-culture model of murine dendritic cells (DCs), T cells and a neuroblastoma cell line was established to evaluate the cytotoxic effect and the T cell effector function in vitro. Expression of immune checkpoint molecules on tumor-infiltrating T cells and the induction of an anti-neuroblastoma immune response using a combination of whole cell vaccination and trAb therapy was investigated in a syngeneic immunocompetent neuroblastoma mouse model (NXS2 in A/J background). Finally, vaccinated mice were assessed for the presence of neuroblastoma-directed antibodies. We show that SUREK trAb-mediated effective killing of NXS2 cells in vitro was strictly dependent on the combined presence of DCs and T cells. Results: Using a syngeneic neuroblastoma mouse model, we showed that vaccination with irradiated tumor cells combined with SUREK trAb treatment significantly prolonged survival of tumor challenged mice and partially prevent tumor outgrowth compared to tumor vaccination alone. Treatment led to upregulation of programmed cell death protein 1 (Pd-1) on tumor infiltrating T cells and combination with anti-Pd-1 checkpoint inhibition enhanced the NXS2-directed humoral immune response. Conclusion: Here, we provide first preclinical evidence that a tumor vaccination combined with SUREK trAb therapy induces an endogenous anti-neuroblastoma immune response reducing tumor recurrence. Furthermore, a combination with anti-Pd-1 immune checkpoint blockade might even further improve this promising immunotherapeutic concept in order to prevent relapse in high-risk neuroblastoma patients.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neuroblastoma , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfocitos T , Antineoplásicos/uso terapéutico , Neuroblastoma/patología
5.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34285106

RESUMEN

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. METHODS: We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. RESULTS: We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. CONCLUSIONS: Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Neuroblastoma/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Metástasis de la Neoplasia
6.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801448

RESUMEN

Spacer or co-stimulatory components in chimeric antigen receptor (CAR) design influence CAR T cell effector function. Few preclinical mouse models optimally support CAR candidate pre-selection for clinical development. Here we use a model in which murine CAR T cells can be exploited with human tumor xenografts. This mouse-in-mouse approach avoids limitations caused by species-specific factors crucial for CAR T cell survival, trafficking and function. We compared trafficking, expansion and tumor control for T cells expressing different CAR construct designs targeting two antigens (L1CAM or HER2), structurally identical except for spacer (long or short) or co-stimulatory (4-1BB or CD28) domains to be evaluated. Using monoclonal, murine-derived L1CAM-specific CAR T cells in Rag-/- mice harboring established xenografted tumors from a human neuroblastoma cell line revealed a clear superiority in CAR T cell trafficking using CD28 co-stimulation. L1CAM-targeting short spacer-CD28/ζ CAR T cells expanded the most at the tumor site and induced initial tumor regression. Treating patient-derived neuroblastoma xenografts with human L1CAM-targeting CAR T cells confirmed the superiority of CD28 co-stimulus. CD28 superiority was also demonstrated with HER2-specific CAR T cells (targeting ovarian carcinoma xenografts). Our findings encourage incorporating CD28 signaling into CAR design for adoptive T cell treatment of solid tumors.

7.
Cancers (Basel) ; 13(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771652

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising treatment strategy, however, therapeutic success against solid tumors such as neuroblastoma remains modest. Recurrence of antigen-poor tumor variants often ultimately results in treatment failure. Using antigen-independent killing mechanisms such as the FAS receptor (FAS)-FAS ligand (FASL) axis through epigenetic manipulation may be a way to counteract the escape achieved by antigen downregulation. Analysis of public RNA-sequencing data from primary neuroblastomas revealed that a particular epigenetic modifier, the histone lysine demethylase 1A (KDM1A), correlated negatively with FAS expression. KDM1A is known to interact with TP53 to repress TP53-mediated transcriptional activation of genes, including FAS. We showed that pharmacologically blocking KDM1A activity in neuroblastoma cells with the small molecule inhibitor, SP-2509, increased FAS cell-surface expression in a strictly TP53-dependent manner. FAS upregulation sensitized neuroblastoma cells to FAS-FASL-dependent killing and augmented L1CAM-directed CAR T cell therapy against antigen-poor or even antigen-negative tumor cells in vitro. The improved therapeutic response was abrogated when the FAS-FASL interaction was abolished with an antagonistic FAS antibody. Our results show that KDM1A inhibition unleashes an antigen-independent killing mechanism via the FAS-FASL axis to make tumor cell variants that partially or totally suppress antigen expression susceptible to CAR T cell therapy.

8.
Front Immunol ; 12: 689697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267756

RESUMEN

Chimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell efficacy. We used a three-dimensional (3D) bioprinting approach for large-scale generation of highly reproducible 3D human tumor models for the test case, neuroblastoma, and compared these to 2D cocultures for evaluation of CAR T cells targeting the L1 cell adhesion molecule, L1CAM. CAR T cells infiltrated the model, and both CAR T and tumor cells were viable for long-term experiments and could be isolated as single-cell suspensions for whole-cell assays quantifying CAR T cell activation, effector function and tumor cell cytotoxicity. L1CAM-specific CAR T cell activation by neuroblastoma cells was stronger in the 3D model than in 2D cocultures, but neuroblastoma cell lysis was lower. The bioprinted 3D neuroblastoma model is highly reproducible and allows detection and quantification of CAR T cell tumor infiltration, representing a superior in vitro analysis tool for preclinical CAR T cell characterization likely to better select CAR T cells for in vivo performance than 2D cocultures.


Asunto(s)
Bioimpresión , Inmunoterapia Adoptiva , Neuroblastoma/terapia , Impresión Tridimensional , Receptores Quiméricos de Antígenos/genética , Linfocitos T/trasplante , Línea Celular Tumoral , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Humanos , Activación de Linfocitos , Neuroblastoma/genética , Neuroblastoma/inmunología , Neuroblastoma/patología , Linfocitos T/inmunología , Factores de Tiempo
9.
Front Immunol ; 11: 531, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296437

RESUMEN

Chimeric antigen receptor (CAR) T cell efficacy against solid tumors is currently limited by several immune escape mechanisms, which may include tumor-derived extracellular vesicles. Advanced neuroblastoma is an aggressive childhood tumor without curative treatment options for most relapsed patients today. We here evaluated the role of tumor-derived extracellular vesicles on the efficacy of CAR T cells targeting the neuroblastoma-specific antigen, CD171. For this purpose, CAR T cell activation, cytokine production, exhaustion, and tumor cell-directed cytotoxicity upon co-culture was evaluated. Tumor-derived extracellular vesicles isolated from SH-SY5Y neuroblastoma cells neither affected CAR T cell activation nor expression of inhibitory markers. Importantly, exposure of CD4+ CD171-specific CAR T cells to tumor-derived extracellular vesicles significantly impaired tumor cytotoxicity of CAR T cells. This effect was independent of neurotrophic receptor tyrosine kinases 1 or 2 (NTRK1, NTRK2) expression, which is known to impact immune responses against neuroblastoma. Our results demonstrate for the first time the impact of tumor-derived extracellular vesicles and non-cell-mediated tumor-suppressive effects on CD4+ CAR T cell efficacy in a preclinical setting. We conclude that these factors should be considered for any CAR T cell-based therapy to make CAR T cell therapy successful against solid tumors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Vesículas Extracelulares , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/inmunología , Línea Celular Tumoral , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Humanos , Neuroblastoma/inmunología
10.
Oncotarget ; 8(17): 27882-27891, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28427187

RESUMEN

Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Furanos/farmacología , Meduloblastoma/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Neoplasias Cerebelosas/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Furanos/uso terapéutico , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Meduloblastoma/genética , Meduloblastoma/mortalidad , Meduloblastoma/patología , Ratones , Ratones Desnudos , Mutación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA