Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Exp Biol ; 226(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37066839

RESUMEN

Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.


Asunto(s)
Tortugas , Animales , Especies Reactivas de Oxígeno/metabolismo , Tortugas/metabolismo , Superóxidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Mitocondrias Cardíacas/metabolismo , Ácido Succínico/metabolismo , Succinatos/metabolismo , Mamíferos/metabolismo
2.
Cardiovasc Drugs Ther ; 34(6): 823-834, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979176

RESUMEN

PURPOSE: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. METHODS AND RESULTS: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. CONCLUSION: Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice.


Asunto(s)
Benzamidas/farmacología , Fármacos Cardiovasculares/farmacología , Cardiomiopatías Diabéticas/prevención & control , Insuficiencia Cardíaca/prevención & control , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
3.
J Biol Chem ; 293(44): 17208-17217, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30232152

RESUMEN

Mitochondrial reactive oxygen species (ROS) production is a tightly regulated redox signal that transmits information from the organelle to the cell. Other mitochondrial signals, such as ATP, are sensed by enzymes, including the key metabolic sensor and regulator, AMP-activated protein kinase (AMPK). AMPK responds to the cellular ATP/AMP and ATP/ADP ratios by matching mitochondrial ATP production to demand. Previous reports proposed that AMPK activity also responds to ROS, by ROS acting on redox-sensitive cysteine residues (Cys-299/Cys-304) on the AMPK α subunit. This suggests an appealing model in which mitochondria fine-tune AMPK activity by both adenine nucleotide-dependent mechanisms and by redox signals. Here we assessed whether physiological levels of ROS directly alter AMPK activity. To this end we added exogenous hydrogen peroxide (H2O2) to cells and utilized the mitochondria-targeted redox cycler MitoParaquat to generate ROS within mitochondria without disrupting oxidative phosphorylation. Mitochondrial and cytosolic thiol oxidation was assessed by measuring peroxiredoxin dimerization and by redox-sensitive fluorescent proteins. Replacing the putative redox-active cysteine residues on AMPK α1 with alanines did not alter the response of AMPK to H2O2 In parallel with measurements of AMPK activity, we measured the cell ATP/ADP ratio. This allowed us to separate the effects on AMPK activity due to ROS production from those caused by changes in this ratio. We conclude that AMPK activity in response to redox changes is not due to direct action on AMPK itself, but is a secondary consequence of redox effects on other processes, such as mitochondrial ATP production.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Activación Enzimática , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Mitocondrias/genética , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción
4.
Pediatr Nephrol ; 34(7): 1167-1174, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29860579

RESUMEN

Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.


Asunto(s)
Lesión Renal Aguda/prevención & control , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Antioxidantes/uso terapéutico , Apoptosis , Biomarcadores/sangre , ADN Mitocondrial/sangre , Humanos , Túbulos Renales/patología , Mitofagia , Necrosis , Estrés Oxidativo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/inmunología , Daño por Reperfusión/terapia
5.
J Mol Cell Cardiol ; 123: 88-91, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118790

RESUMEN

Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably myocardial infarction and stroke. While reperfusion of ischemic tissue is essential for survival, it also initiates cell death through generation of mitochondrial reactive oxygen species (ROS). Recent work has revealed a novel pathway underlying ROS production at reperfusion in vivo in which the accumulation of succinate during ischemia and its subsequent rapid oxidation at reperfusion drives ROS production at complex I by reverse electron transport (RET). Pharmacologically inhibiting ischemic succinate accumulation, or slowing succinate metabolism at reperfusion, have been shown to be cardioprotective against IR injury. Here, we determined whether ischemic preconditioning (IPC) contributes to cardioprotection by altering kinetics of succinate accumulation and oxidation during IR. Mice were subjected to a 30-minute occlusion of the left anterior descending coronary artery followed by reperfusion, with or without a protective IPC protocol prior to sustained ischemia. We found that IPC had no effect on ischemic succinate accumulation with both control and IPC mice having profound increases in succinate compared to normoxia. Furthermore, after only 1-minute reperfusion succinate was rapidly metabolised returning to near pre-ischemic levels in both groups. We conclude that IPC does not affect ischemic succinate accumulation, or its oxidation at reperfusion.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción , Ácido Succínico/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo
6.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36217875

RESUMEN

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Asunto(s)
Corazón , Mitocondrias , Ratones , Animales , Citosol/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Cardíacas/metabolismo , Fraccionamiento Celular/métodos
7.
Nat Cardiovasc Res ; 2(8): 733-745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38666037

RESUMEN

Recurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.

8.
Sci Adv ; 8(45): eabo7956, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367943

RESUMEN

Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Ratones , Fosforilación , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Mamíferos/metabolismo
9.
Redox Biol ; 54: 102368, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35749842

RESUMEN

Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Hipoxia/metabolismo , Isquemia/metabolismo , Lactatos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Ácido Succínico/metabolismo
10.
Cell Metab ; 34(1): 140-157.e8, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34861155

RESUMEN

Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.


Asunto(s)
Tejido Adiposo Pardo , Cisteína , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Cisteína/metabolismo , Metabolismo Energético , Femenino , Inflamación/metabolismo , Masculino , Ratones , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Redox Biol ; 41: 101884, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561740

RESUMEN

DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein.


Asunto(s)
Daño por Reperfusión , Animales , Modelos Animales de Enfermedad , Isquemia , Proteína Desglicasa DJ-1 , Especies Reactivas de Oxígeno
12.
Cardiovasc Res ; 117(4): 1188-1201, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32766828

RESUMEN

AIMS: Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION: Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Reperfusión Miocárdica/efectos adversos , Miocitos Cardíacos/metabolismo , Ácido Succínico/metabolismo , Simportadores/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Preparación de Corazón Aislado , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sus scrofa , Simportadores/genética , Factores de Tiempo
13.
Life Sci Alliance ; 3(6)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32321733

RESUMEN

Lipid droplets (LDs) are metabolic organelles that store neutral lipids and dynamically respond to changes in energy availability by accumulating or mobilizing triacylglycerols (TAGs). How the plastic behavior of LDs is regulated is poorly understood. Hereditary spastic paraplegia is a central motor axonopathy predominantly caused by mutations in SPAST, encoding the microtubule-severing protein spastin. The spastin-M1 isoform localizes to nascent LDs in mammalian cells; however, the mechanistic significance of this targeting is not fully explained. Here, we show that tightly controlled levels of spastin-M1 are required to inhibit LD biogenesis and TAG accumulation. Spastin-M1 maintains the morphogenesis of the ER when TAG synthesis is prevented, independent from microtubule binding. Moreover, spastin plays a microtubule-dependent role in mediating the dispersion of LDs from the ER upon glucose starvation. Our results reveal a dual role of spastin to shape ER tubules and to regulate LD movement along microtubules, opening new perspectives for the pathogenesis of hereditary spastic paraplegia.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Microtúbulos/metabolismo , Transducción de Señal/genética , Paraplejía Espástica Hereditaria/metabolismo , Espastina/deficiencia , Animales , Línea Celular Tumoral , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Isoenzimas , Ratones , Neuronas Motoras/metabolismo , Mutación , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Transfección , Triglicéridos/metabolismo
14.
Redox Biol ; 36: 101640, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32863205

RESUMEN

Renal ischemia reperfusion (IR) injury leads to significant patient morbidity and mortality, and its amelioration is an urgent unmet clinical need. Succinate accumulates during ischemia and its oxidation by the mitochondrial enzyme succinate dehydrogenase (SDH) drives the ROS production that underlies IR injury. Consequently, compounds that inhibit SDH may have therapeutic potential against renal IR injury. Among these, the competitive SDH inhibitor malonate, administered as a cell-permeable malonate ester prodrug, has shown promise in models of cardiac IR injury, but the efficacy of malonate ester prodrugs against renal IR injury have not been investigated. Here we show that succinate accumulates during ischemia in mouse, pig and human models of renal IR injury, and that its rapid oxidation by SDH upon reperfusion drives IR injury. We then show that the malonate ester prodrug, dimethyl malonate (DMM), can ameliorate renal IR injury when administered at reperfusion but not prior to ischemia in the mouse. Finally, we show that another malonate ester prodrug, diacetoxymethyl malonate (MAM), is more potent than DMM because of its faster esterase hydrolysis. Our data show that the mitochondrial mechanisms of renal IR injury are conserved in the mouse, pig and human and that inhibition of SDH by 'tuned' malonate ester prodrugs, such as MAM, is a promising therapeutic strategy in the treatment of clinical renal IR injury.


Asunto(s)
Profármacos , Daño por Reperfusión , Animales , Ésteres , Humanos , Malonatos , Ratones , Profármacos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Succinato Deshidrogenasa/metabolismo , Porcinos
15.
Sci Rep ; 9(1): 2850, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808950

RESUMEN

ATP depletion and succinate accumulation during ischemia lead to oxidative damage to mammalian organs upon reperfusion. In contrast, freshwater turtles survive weeks of anoxia at low temperatures without suffering from oxidative damage upon reoxygenation, but the mechanisms are unclear. To determine how turtles survive prolonged anoxia, we measured ~80 metabolites in hearts from cold-acclimated (5 °C) turtles exposed to 9 days anoxia and compared the results with those for normoxic turtles (25 °C) and mouse hearts exposed to 30 min of ischemia. In turtles, ATP and ADP decreased to new steady-state levels during fasting and cold-acclimation and further with anoxia, but disappeared within 30 min of ischemia in mouse hearts. High NADH/NAD+ ratios were associated with succinate accumulation in both anoxic turtles and ischemic mouse hearts. However, succinate concentrations and succinate/fumarate ratios were lower in turtle than in mouse heart, limiting the driving force for production of reactive oxygen species (ROS) upon reoxygenation in turtles. Furthermore, we show production of ROS from succinate is prevented by re-synthesis of ATP from ADP. Thus, maintenance of an ATP/ADP pool and low succinate accumulation likely protects turtle hearts from anoxia/reoxygenation injury and suggests metabolic interventions as a therapeutic approach to limit ischemia/reperfusion injury in mammals.


Asunto(s)
Hipoxia , Miocardio/metabolismo , Ácido Succínico/metabolismo , Tortugas/fisiología , Animales , Corazón/fisiología , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión , Tortugas/metabolismo
16.
Free Radic Biol Med ; 134: 678-687, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30731114

RESUMEN

Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.


Asunto(s)
Modelos Animales de Enfermedad , Hormesis , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/citología , Paraquat/farmacología , Superóxidos/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Herbicidas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
17.
Nat Metab ; 1: 966-974, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32395697

RESUMEN

During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.


Asunto(s)
Trasplante de Órganos , Daño por Reperfusión/metabolismo , Ácido Succínico/metabolismo , Animales , Humanos , Ratones , Porcinos
18.
Nat Genet ; 47(7): 717-726, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25985138

RESUMEN

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Diagnóstico Molecular , Secuencia de Bases , Análisis Mutacional de ADN , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA