RESUMEN
Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Consolidación de la Memoria , Memoria Episódica , Recuerdo Mental , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Recuerdo Mental/fisiología , Anciano , Consolidación de la Memoria/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Factores de TiempoRESUMEN
Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.
Asunto(s)
Memoria Episódica , Neocórtex , Humanos , Recuerdo Mental , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagenRESUMEN
The apolipoprotein E gene ε4 allele (APOE ε4) and higher circulating level of C-reactive protein (CRP) have been extensively investigated as risk factors for Alzheimer's disease (AD). Paradoxically, APOE ε4 has been associated with lower levels of blood CRP in middle-aged and older populations. However, few studies have investigated this intriguing relation and its impact on neurological markers for AD in younger ages, nor across the whole lifespan. Here, we examine associations of blood CRP levels, APOE ε4, and biomarkers for AD in a cognitively healthy lifespan cohort (N up to 749; 20-81 years of age) and replicate the findings in UK Biobank (N = 304 322; 37-72 years of age), the developmental ABCD study (N = 10 283; 9-11 years of age), and a middle-aged sample (N = 339; 40-65 years of age). Hippocampal volume, brain amyloid-ß (Aß) plaque levels, cerebrospinal fluid (CSF) levels of Aß and tau species, and neurofilament protein light protein (NFL) were used as AD biomarkers in subsamples. In addition, we examined the genetic contribution to the variation of CRP levels over different CRP ranges using polygenic scores for CRP (PGS-CRP). Our results show APOE ε4 consistently associates with low blood CRP levels across all age groups (p < 0.05). Strikingly, both ε4 and PGS-CRP associated mainly with blood CRP levels within the low range (<5mg/L). We then show both APOE ε4 and high CRP levels associate with smaller hippocampus volumes across the lifespan (p < 0.025). APOE ε4 was associated with high Aß plaque levels in the brain (FDR-corrected p = 8.69x10-4), low levels of CSF Aß42 (FDR-corrected p = 6.9x10-2), and lower ratios of Aß42 to Aß40 (FDR-corrected p = 5.08x10-5). Blood CRP levels were weakly correlated with higher ratio of CSF Aß42 to Aß40 (p = 0.03, FDR-corrected p = 0.4). APOE ε4 did not correlate with blood concentrations of another 9 inflammatory cytokines, and none of these cytokines correlated with AD biomarkers. CONCLUSION: The inverse correlation between APOEε 4 and blood CRP levels existed before any pathological AD biomarker was observed, and only in the low CRP level range. Thus, we suggest to investigate whether APOEε 4 can confer risk by being associated with a lower inflammatory response to daily exposures, possibly leading to greater accumulation of low-grade inflammatory stress throughout life. A lifespan perspective is needed to understand this relationship concerning risk of developing AD.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Humanos , Longevidad/genética , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismoRESUMEN
It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6-82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Cognición/fisiología , Longevidad/fisiología , Memoria Episódica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Niño , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Adulto JovenRESUMEN
Primate cortical evolution has been characterized by massive and disproportionate expansion of a set of specific regions in the neocortex. The associated increase in neocortical neurons comes with a high metabolic cost, thus the functions served by these regions must have conferred significant evolutionary advantage. In the present series of analyses, we show that evolutionary high-expanding cortex - as estimated from patterns of surface growth from several primate species - shares functional connections with different brain networks in a context-dependent manner. Specifically, we demonstrate that high-expanding cortex is characterized by high internetwork functional connectivity; is recruited flexibly over many different cognitive tasks; and changes its functional coupling pattern between rest and a multimodal task-state. The capacity of high-expanding cortex to connect flexibly with various specialized brain networks depending on particular cognitive requirements suggests that its selective growth and sustainment in evolution may have been linked to an involvement in supramodal cognition. In accordance with an evolutionary-developmental view, we find that this observed ability of high-expanding regions - to flexibly modulate functional connections as a function of cognitive state - emerges gradually through childhood, with a prolonged developmental trajectory plateauing in young adulthood.
Asunto(s)
Evolución Biológica , Callithrix/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Sapajus apella/fisiología , Adolescente , Adulto , Animales , Mapeo Encefálico , Niño , Femenino , Humanos , Macaca mulatta/fisiología , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Especificidad de la Especie , Adulto JovenRESUMEN
Seminal human brain histology work has demonstrated developmental waves of myelination. Here, using a micro-structural magnetic resonance imaging (MRI) marker linked to myelin, we studied fine-grained age differences to deduce waves of growth, stability, and decline of cortical myelination over the life-cycle. In 484 participants, aged 8-85 years, we fitted smooth growth curves to T1- to T2-weighted ratio in each of 360 regions from one of seven cytoarchitectonic classes. From the first derivatives of these generally inverted-U trajectories, we defined three milestones: the age at peak growth; the age at onset of a stable plateau; and the age at the onset of decline. Age at peak growth had a bimodal distribution comprising an early (pre-pubertal) wave of primary sensory and motor cortices and a later (post-pubertal) wave of association, insular and limbic cortices. Most regions reached stability in the 30-s but there was a second wave reaching stability in the 50-s. Age at onset of decline was also bimodal: in some right hemisphere regions, the curve declined from the 60-s, but in other left hemisphere regions, there was no significant decline from the stable plateau. These results are consistent with regionally heterogeneous waves of intracortical myelinogenesis and age-related demyelination.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Vaina de Mielina/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Conectoma , Femenino , Humanos , Longevidad , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset (4-88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This means that regions that developed together in childhood also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic stage throughout life.
Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Niño , Preescolar , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto JovenRESUMEN
Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible life-long influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Cognición , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Peso al Nacer , Corteza Cerebral/anatomía & histología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Relaciones Madre-Hijo , Adulto JovenRESUMEN
Higher order speeded cognitive abilities depend on efficient coordination of activity across the brain, rendering them vulnerable to age reductions in structural and functional brain connectivity. The concept of "disconnected aging" has been invoked, suggesting that degeneration of connections between distant brain regions cause cognitive reductions. However, it has not been shown that changes in cognitive functions over time can be explained by simultaneous changes in brain connectivity. We followed 119 young and middle-aged (23-52 years) and older (63-86 years) adults for 3.3 years with repeated assessments of structural and functional brain connectivity and executive functions. We found unique age-related longitudinal reductions in executive function over and above changes in more basic cognitive processes. Intriguingly, 82.5% of the age-related decline in executive function could be explained by changes in connectivity over time. While both structural and functional connectivity changes were related to longitudinal reductions in executive function, only structural connectivity change could explain the age-specific decline. This suggests that the major part of the age-related reductions in executive function can be attributed to micro- and macrostructural alterations in brain connectivity. Although correlational in nature, we believe the present results constitute evidence for a "disconnected brain" view on cognitive aging.
Asunto(s)
Encéfalo/fisiología , Envejecimiento Cognitivo/fisiología , Función Ejecutiva/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Test de Stroop , Adulto JovenRESUMEN
How personality traits relate to structural brain changes in development is an important but understudied question. In this study, cortical thickness (CT) and surface area (SA), estimated using magnetic resonance imaging (MRI), were investigated in 99 participants aged 8-19 years. Follow-up MRI data were collected after on average 2.6 years for 74 individuals. The Big Five personality traits were related to longitudinal regional CT or SA development, but limited cross-sectional relations were observed. Conscientiousness, emotional stability, and imagination were associated with more age-expected cortical thinning over time. The results suggest that the substantial individual variability observed in personality traits may partly be explained by cortical maturation across adolescence, implying a developmental origin for personality-brain relations observed in adults.
Asunto(s)
Corteza Cerebral/anatomía & histología , Neuroimagen/métodos , Personalidad/fisiología , Adolescente , Adulto , Factores de Edad , Corteza Cerebral/diagnóstico por imagen , Niño , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Adulto JovenRESUMEN
There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that genetically programmed neurodevelopmental events cause a lasting impact on the organization of the cerebral cortex observable decades later. Here we tested how developmental and lifespan changes in cortical thickness fit the underlying genetic organizational principles of cortical thickness in a longitudinal sample of 974 participants between 4.1 and 88.5 y of age with a total of 1,633 scans, including 773 scans from children below 12 y. Genetic clustering of cortical thickness was based on an independent dataset of 406 adult twins. Developmental and adult age-related changes in cortical thickness followed closely the genetic organization of the cerebral cortex, with change rates varying as a function of genetic similarity between regions. Cortical regions with overlapping genetic architecture showed correlated developmental and adult age change trajectories and vice versa for regions with low genetic overlap. Thus, effects of genes on regional variations in cortical thickness in middle age can be traced to regional differences in neurodevelopmental change rates and extrapolated to further adult aging-related cortical thinning. This finding suggests that genetic factors contribute to cortical changes through life and calls for a lifespan perspective in research aimed at identifying the genetic and environmental determinants of cortical development and aging.
Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Genes , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Peso al Nacer , Niño , Preescolar , Femenino , Humanos , Lactante , Longevidad , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
At a large scale, the human brain is organized into modules of interconnected regions, some of which play opposing roles in supporting cognition. In particular, the Default-Mode Network (DMN) has been linked to operations on internal representations, while task-positive networks are recruited during interactions with the external world. Here, we test the hypothesis that the generation of durable long-term memories depends on optimal recruitment of such antagonistic large-scale networks. As long-term memory consolidation is a process ongoing for days and weeks after an experience, we propose that individuals characterized by strong decoupling of the DMN and task-positive networks at rest operate in a mode beneficial for the long-term stabilization of episodic memories. To capture network connectivity unaffected by transient task demands and representative of brain behavior outside an experimental setting, 87 participants were scanned during rest before performing an associative encoding task. To link individual resting-state functional connectivity patterns to time-dependent memory consolidation processes, participants were given an unannounced memory test, either after a brief interval or after a retention period of ~6 weeks. We found that participants with a resting state characterized by high synchronicity in a DMN-centered network system and low synchronicity between task-positive networks showed superior recollection weeks after encoding. These relationships were not observed for information probed only hours after encoding. Furthermore, the two network systems were found to be anticorrelated. Our results suggest that this memory-relevant antagonism between DMN and task-positive networks is maintained through complex regulatory interactions between the systems.
Asunto(s)
Encéfalo/fisiología , Consolidación de la Memoria/fisiología , Memoria Episódica , Memoria a Largo Plazo/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto JovenRESUMEN
Extensive efforts are devoted to understand the functional (FC) and structural connections (SC) of the brain. FC is usually measured by functional magnetic resonance imaging (fMRI), and conceptualized as degree of synchronicity in brain activity between different regions. SC is typically indexed by measures of white matter (WM) properties, for example, by diffusion weighted imaging (DWI). FC and SC are intrinsically related, in that coordination of activity across regions ultimately depends on fast and efficient transfer of information made possible by structural connections. Convergence between FC and SC has been shown for specific networks, especially the default mode network (DMN). However, it is not known to what degree FC is constrained by major WM tracts and whether FC and SC change together over time. Here, 120 participants (20-85 years) were tested at two time points, separated by 3.3 years. Resting-state fMRI was used to measure FC, and DWI to measure WM microstructure as an index of SC. TRACULA, part of FreeSurfer, was used for automated tractography of 18 major WM tracts. Cortical regions with tight structural couplings defined by tractography were only weakly related at the functional level. Certain regions of the DMN showed a modest relationship between change in FC and SC, but for the most part, the two measures changed independently. The main conclusions are that anatomical alignment of SC and FC seems restricted to specific networks and tracts, and that changes in SC and FC are not necessarily strongly correlated. Hum Brain Mapp 38:561-573, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Modelos Neurológicos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Oxígeno/sangre , Descanso , Adulto JovenRESUMEN
Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age-related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico-spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training-related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply-demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666-5680, 2017. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Encéfalo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Sustancia Blanca/fisiología , Adulto , Anciano , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagenRESUMEN
Myelin content of the cerebral cortex likely impacts cognitive functioning, but this notion has scarcely been investigated in vivo in humans. Here we tested for a relationship between intracortical myelin and a direct measure of neural activity in the form of the electrophysiological response error-related negativity (ERN). Using magnetic resonance imaging, myelin mapping was performed in 81 healthy adults aged 40-60 years by means of a T1- and T2-weighted (T1w/T2w) signal intensity ratio approach. Error trials on a version of the Eriksen flanker task triggered the ERN, a negative deflection of the event-related potential reflecting performance monitoring. Compelling evidence from neuroimaging, lesion, and source localization studies indicates that the ERN stems from the cingulate cortex. Vertex-wise analyses across the cingulate demonstrated that increased amplitude of the ERN was related to higher levels of intracortical myelin in the left posterior cingulate cortex. The association was independent of general ability level and subjacent white matter myelin. The results fit the notion that degree of myelin within the posterior cingulate cortex as measured by T1w/T2w signal intensity plays a role in error processing and cognitive control through the relationship with neural activity as measured by ERN amplitude, potentially by facilitating local neural synchronization.
Asunto(s)
Potenciales Evocados/fisiología , Función Ejecutiva/fisiología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Proteínas de la Mielina/metabolismo , Adulto , Atención/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Tiempo de ReacciónRESUMEN
Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging.
Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Encéfalo/patología , Encéfalo/fisiología , Memoria Episódica , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Mapeo Encefálico , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Descanso , Percepción del Habla , Adulto JovenRESUMEN
The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Neuroanatomía , Solución de Problemas/fisiología , Adolescente , Adulto , Animales , Evolución Biológica , Niño , Preescolar , Femenino , Humanos , Macaca , Imagen por Resonancia Magnética/métodos , Masculino , Neuroanatomía/métodos , Adulto JovenRESUMEN
We continuously encounter and process novel events in the surrounding world, but only some episodes will leave detailed memory traces that can be recollected after weeks and months. Here, our aim was to monitor brain activity during encoding of events that eventually transforms into long-term stable memories. Previous functional magnetic resonance imaging (fMRI) studies have shown that the degree of activation of different brain regions during encoding is predictive of later recollection success. However, most of these studies tested participants' memories the same day as encoding occurred, whereas several lines of research suggest that extended post-encoding processing is of crucial importance for long-term consolidation. Using fMRI, we tested whether the same encoding mechanisms are predictive of recollection success after hours as after a retention interval of several weeks. Seventy-eight participants were scanned during an associative encoding task and given a source memory test the same day or after â¼6 weeks. We found a strong link between regional activity levels during encoding and recollection success over short time intervals. However, results further showed that durable source memories, i.e., events recollected after several weeks, were not simply the events associated with the highest activity levels at encoding. Rather, strong levels of connectivity between the right hippocampus and perceptual areas, as well as with parts of the self-referential default-mode network, seemed instrumental in establishing durable source memories. Thus, we argue that an initial intensity-based encoding is necessary for short-term encoding of events, whereas additional processes involving hippocampal-cortical communication aid transformation into stable long-term memories.
Asunto(s)
Corteza Cerebral/fisiología , Hipocampo/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Retención en Psicología/fisiología , Adulto , Aprendizaje por Asociación/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Tiempo , Adulto JovenRESUMEN
In this perspective paper, we examine possible premises of plasticity in the neural substrates underlying cognitive change. We take the special role of the medial temporal lobe as an anchoring point, but also investigate characteristics throughout the cortex. Specifically, we examine the dimensions of evolutionary expansion, heritability, variability of morphometric change, and inter-individual variance in myelination with respect to the plastic potential of different brain regions. We argue that areas showing less evolutionary expansion, lower heritability, greater variability of cortical thickness change through the lifespan, and greater inter-individual differences in intracortical myelin content have a great extent of plasticity. While different regions of the brain show these features to varying extent, analyses converge on the medial temporal lobe including the hippocampi as the target of all these premises. We discuss implications for effects of training on brain structures, and conditions under which plasticity may be evoked.
Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Cognición/fisiología , Ejercicio Físico/fisiología , Plasticidad Neuronal/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiología , Animales , Mapeo Encefálico/métodos , Humanos , Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Especificidad de la EspecieRESUMEN
The purpose of the present study was to detail the childhood developmental course of different white matter (WM) characteristics. In a longitudinal diffusion tensor imaging (DTI) study of 159 healthy children between 4 and 11years scanned twice, we used tract-based spatial statistics as well as delineation of 15 major WM tracts to characterize the regional pattern of change in fractional anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD). We tested whether there were decelerations of change with increasing age globally and tract-wise, and also illustrated change along medial-to-lateral, posterior-to-anterior and inferior-to-superior gradients. We found a significant linear increase in global FA, and decrease in MD and RD over time. For mean AD, a weak decrease was observed. The developmental changes in specific WM tracts showed regional differences. Eight WM tracts showed non-linear development patterns for one or several DTI metrics, with a deceleration in change with age. Sex did not affect change in any DTI metric. Overall, greater rate of change was found in the left hemisphere. Spatially, there was a posterior-to-anterior gradient of change with greater change in frontal regions for all metrics. The current study provides a comprehensive characterization of the regional patters of change in WM microstructure across pre-adolescence childhood.