Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 70(5): 825-841.e6, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861161

RESUMEN

Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes.


Asunto(s)
Neoplasias Cerebelosas/genética , Metilación de ADN , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/genética , Meduloblastoma/genética , Oncogenes , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Proliferación Celular , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Regulación Neoplásica de la Expresión Génica , Genes ras , N-Metiltransferasa de Histona-Lisina/deficiencia , Lisina , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo
2.
Rapid Commun Mass Spectrom ; 36(6): e9247, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34951071

RESUMEN

RATIONALE: In-depth characterization of the three capsid viral proteins (VPs 1, 2, and 3) of adeno-associated viruses (AAVs) is immediately needed to ensure the consistency in gene therapy products and processes. These proteins are typically present at very low concentrations in matrices containing high concentrations of excipients and salts. Thus, there is a need for convenient methods for sample preparation before proteomic analysis. The aim of this study was to meet this need by developing a fast, reliable approach for isolating VPs in a manner enabling their efficient digestion and in-depth characterization using liquid chromatography-mass spectrometry (LC-MS). METHODS: VPs from Anc80 were precipitated with different organic solvents, and the resulting precipitates were dissolved in either sodium deoxycholate (SDC) and N-dodecyl-beta-D-maltoside (DDM) or guanidine hydrochloride (Gu-HCl). The peptides obtained by the following enzymatic digestion by either trypsin or Asp-N were analyzed using LC-MS/MS. RESULTS: We found that precipitation with chloroform/methanol/water results in fast, efficient preparation of VP samples, allowing 100% and 99.2% amino acid sequence coverage of VP1 for trypsin and Asp-N digestion, respectively. This also allowed complete sequence confirmation of VP1, VP2, and VP3 of Anc80, as well as characterization of the amino acid sequences of the N- and C-terminal regions of each VP, together with their post-translational modifications (PTMs). CONCLUSIONS: The presented method enables fast, reliable, and relatively cheap sample preparation for identifying AAV serotypes and characterizing the heterogeneity of capsid viral proteins, including their PTMs.


Asunto(s)
Proteínas de la Cápside/química , Cromatografía Líquida de Alta Presión/métodos , Dependovirus/metabolismo , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/química , Dependovirus/genética , Proteómica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Nucleic Acids Res ; 44(22): 10603-10618, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27625395

RESUMEN

Self-renewal and pluripotency are two fundamental characteristics of embryonic stem cells (ESCs) and are controlled by diverse regulatory factors, including pluripotent factors, epigenetic regulators and microRNAs (miRNAs). Although histone methyltransferases are key epigenetic regulators, whether and how a histone methyltransferase forms a network with miRNAs and the core pluripotent factor system to regulate ESC stemness is little known. Here, we show that the protein arginine methyltransferase 7 (PRMT7) is a pluripotent factor essential for the stemness of mouse ESCs. PRMT7 repressed the miR-24-2 gene encoding miR-24-3p and miR-24-2-5p by upregulating the levels of symmetrically dimethylated H4R3. Notably, miR-24-3p targeted the 3' untranslated regions (UTRs) of the major pluripotent factors Oct4, Nanog, Klf4 and c-Myc, whereas miR-24-2-5p silenced Klf4 and c-Myc expression. miR-24-3p and miR-24-2-5p also targeted the 3'UTR of their repressor gene Prmt7 miR-24-3p and miR-24-2-5p induced mouse ESC differentiation, and their anti-sense inhibitors substantially reversed spontaneous differentiation of PRMT7-depleted mouse ESCs. Oct4, Nanog, Klf4 and c-Myc positively regulated Prmt7 expression. These findings define miR-24-3p and miR-24-2-5p as new anti-pluripotent miRNAs and also reveal a novel epigenetic stemness-regulatory mechanism in which a double-negative feedback loop consisting of PRMT7 and miR-24-3p/miR24-2-5p interplays with Oct4, Nanog, Klf4 and c-Myc to control ESC stemness.


Asunto(s)
MicroARNs/fisiología , Células Madre Embrionarias de Ratones/fisiología , Proteína-Arginina N-Metiltransferasas/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Diferenciación Celular , Autorrenovación de las Células , Células Cultivadas , Regulación hacia Abajo , Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN
4.
J Biol Chem ; 290(35): 21553-67, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170450

RESUMEN

Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/ß-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression.


Asunto(s)
Cromatina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina/metabolismo , Proteínas Wnt/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regulación hacia Arriba
5.
Cell Mol Life Sci ; 72(23): 4577-92, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26305020

RESUMEN

Histone methyltransferases and demethylases epigenetically regulate gene expression by modifying histone methylation status in numerous cellular processes, including cell differentiation and proliferation. These modifiers also control methylation levels of various non-histone proteins, such as effector proteins that play critical roles in cellular signaling networks. Dysregulated histone methylation modifiers alter expression of oncogenes and tumor suppressor genes and change methylation states of effector proteins, frequently resulting in aberrant cellular signaling cascades and cellular transformation. In this review, we summarize the role of histone methylation modifiers in regulating the following signaling pathways: NF-κB, RAS/RAF/MEK/MAPK, PI3K/Akt, Wnt/ß-catenin, p53, and ERα.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , FN-kappa B/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Arginina/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , Humanos , Lisina/metabolismo , Sistema de Señalización de MAP Quinasas , Metilación , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal
6.
Cancer Cell ; 10(1): 13-24, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16843262

RESUMEN

BRCA1 exerts transcriptional repression through interaction with CtIP in the C-terminal BRCT domain and ZBRK1 in the central domain. A dozen genes, including angiopoietin-1 (ANG1), a secreted angiogenic factor, are corepressed by BRCA1 and CtIP based on microarray analysis of mammary epithelial cells in 3D culture. BRCA1, CtIP, and ZBRK1 form a complex that coordinately represses ANG1 expression via a ZBRK1 recognition site in the ANG1 promoter. Impairment of this complex upregulates ANG1, which stabilizes endothelial cells that form a capillary-like network structure. Consistently, Brca1-deficient mouse mammary tumors exhibit accelerated growth, pronounced vascularization, and overexpressed ANG1. These results suggest that, besides its role in maintaining genomic stability, BRCA1 directly regulates the expression of angiogenic factors to modulate the tumor microenvironment.


Asunto(s)
Angiopoyetina 1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Mamarias Experimentales/patología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , Animales , Proteína BRCA1/genética , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Endodesoxirribonucleasas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Mutación/genética , Neovascularización Patológica/patología , Unión Proteica , Interferencia de ARN , Elementos de Respuesta/genética
7.
Hum Gene Ther ; 34(15-16): 742-757, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276150

RESUMEN

Recombinant adeno-associated virus (rAAV) has been utilized successfully for in vivo gene delivery for treatment of a variety of human diseases. To sustain the growth of recombinant AAV gene therapy products, there is a critical need for the development of accurate and robust analytical methods. Fifty percent tissue culture infectious dose (TCID50) assay is an in vitro cell-based method widely used to determine AAV infectivity, and this assay is historically viewed as a challenge due to its high variability. Currently, quantitative PCR (qPCR) serves as the endpoint method to detect the amount of replicated viral genome after infection. In this study, we optimize the TCID50 assay by adapting endpoint detection with droplet digital PCR (ddPCR). We performed TCID50 assays using ATCC AAV-2 reference standard stock material across 18 independent runs. The cell lysate from TCID50 assay was then analyzed using both qPCR and ddPCR endpoint to allow for direct comparison between the two methods. The long-term 1-year side-by-side comparison between qPCR and ddPCR as endpoint measurement demonstrated improved interassay precision when the ddPCR method was utilized. In particular, after the addition of a novel secondary set threshold for infectivity scoring of individual wells, the average infectious titer of 18 runs is 6.45E+08 with % coefficient of variation (CV) of 42.5 and 5.63E+08 with % CV of 34.9 by qPCR and ddPCR, respectively. In this study, we offer improvements of infectious titer assay with (1) higher interassay precision by adapting ddPCR as an endpoint method without the need of standard curve preparation; (2) identification of a second "set threshold" value in infectivity scoring that improves assay precision; and (3) application of statistical analysis to identify the acceptance range of infectious titer values. Taken together, we provide an optimized TCID50 method with improved interassay precision that is important for rAAV infectious titer testing during process development and manufacturing.


Asunto(s)
Dependovirus , Genoma Viral , Humanos , Dependovirus/genética , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
8.
ACS Omega ; 7(41): 36825-36835, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278084

RESUMEN

Adenoviruses (AdVs) have recently become widely used therapeutic vectors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. AdVs are large, nonenveloped viruses with an icosahedral capsid formed from several proteins that encloses double-stranded DNA. These proteins are the main components and key players in initial stages of infection by the virus particles, so their heterogeneity and content must be evaluated to ensure product and process consistency. Peptide mapping can provide detailed information on these proteins, e.g., their amino acid sequences and post-translational modifications (PTMs), which is crucial for the development and optimization of the manufacturing processes. However, sample preparation remains the main bottleneck for successful proteomic analysis of the viral proteins (VPs) of AdVs due to their low concentrations and vast stoichiometric ranges. To address this problem, we have developed a fast and efficient protocol for preparing samples for proteomic analysis of VPs of AdV5 that requires no cleaning step prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The approach enabled identification of 92% of amino acids in AdV5 VPs on average and quantification of 53 PTMs in a single LC-MS/MS experiment using trypsin protease. The data obtained demonstrate the method's potential utility for supporting the development of novel AdV-based gene therapy products (GTPs).

9.
J Cell Biochem ; 110(6): 1279-87, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20564229

RESUMEN

Epithelial stem cells, such as those present in mammalian skin, intestine, or mammary gland, are tissue stem cells capable of both long-term self-renewal and multi-lineage differentiation. Here we review studies implicating epigenetic control mechanisms in mammalian epithelial stem cell development and homeostasis. We also provide an update of recent progresses in the involvement of canonical Wnt signaling and note an interesting link between the Wnt pathway and chromatin regulation in epithelial stem cells. We anticipate that epigenetic and epigenomic studies of these cells will increase exponentially in the near future.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Células Madre/citología , Animales , Cromatina/metabolismo , Epigénesis Genética , Células Epiteliales/metabolismo , Homeostasis , Humanos , Transducción de Señal , Células Madre/metabolismo , Proteínas Wnt/metabolismo
10.
Bioessays ; 30(5): 448-56, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18404694

RESUMEN

Identification of Pygopus in Drosophila as a dedicated component of the Wg (fly homolog of mammalian Wnt) signaling cascade initiated many inquiries into the mechanism of its function. Surprisingly, the nearly exclusive role for Pygopus in Wg signal transduction in flies is not seen in mice, where Pygopus appears to have both Wnt-related and Wnt-independent functions. This review addresses the initial findings of Pygopus as a Wg/Wnt co-activator in light of recent data from both fly and mammalian studies. We compare and contrast the developmental phenotypes of pygopus mutants to those characterized for known Wg/Wnt transducers and explore the data regarding a role for mammalian Pygopus 2 in tumorigenesis. We further analyze the roles of the two conserved domains of Pygopus proteins in transcription, and propose a model for the molecular mechanism of Pygopus function in both Wg/Wnt signaling and Wnt-independent transcriptional regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Ensamble y Desensamble de Cromatina , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Evolución Molecular , Femenino , Genes de Insecto , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Neoplasias/etiología , Neoplasias/genética , Neoplasias/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad de la Especie , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Wnt/genética , Proteína Wnt1 , beta Catenina/metabolismo
11.
Cancer Cell ; 37(4): 599-617.e7, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32243837

RESUMEN

Epigenetic modifiers frequently harbor loss-of-function mutations in lung cancer, but their tumor-suppressive roles are poorly characterized. Histone methyltransferase KMT2D (a COMPASS-like enzyme, also called MLL4) is among the most highly inactivated epigenetic modifiers in lung cancer. Here, we show that lung-specific loss of Kmt2d promotes lung tumorigenesis in mice and upregulates pro-tumorigenic programs, including glycolysis. Pharmacological inhibition of glycolysis preferentially impedes tumorigenicity of human lung cancer cells bearing KMT2D-inactivating mutations. Mechanistically, Kmt2d loss widely impairs epigenomic signals for super-enhancers/enhancers, including the super-enhancer for the circadian rhythm repressor Per2. Loss of Kmt2d decreases expression of PER2, which regulates multiple glycolytic genes. These findings indicate that KMT2D is a lung tumor suppressor and that KMT2D deficiency confers a therapeutic vulnerability to glycolytic inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Proteínas de Unión al ADN/antagonistas & inhibidores , Desoxiglucosa/farmacología , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Glucólisis , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Neoplasias/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Animales , Antimetabolitos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Cell Biol ; 25(9): 3535-42, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831459

RESUMEN

CtIP interacts with a group of tumor suppressor proteins including RB (retinoblastoma protein), BRCA1, Ikaros, and CtBP, which regulate cell cycle progression through transcriptional repression as well as chromatin remodeling. However, how CtIP exerts its biological function in cell cycle progression remains elusive. To address this issue, we generated an inactivated Ctip allele in mice by inserting a neo gene into exon 5. The corresponding Ctip(-/-) embryos died at embryonic day 4.0 (E4.0), and the blastocysts failed to enter S phase but accumulated in G(1), leading to a slightly elevated cell death. Mouse NIH 3T3 cells depleted of Ctip were arrested at G(1) with the concomitant increase in hypophosphorylated Rb and Cdk inhibitors, p21. However, depletion of Ctip failed to arrest Rb(-/-) mouse embryonic fibroblasts (MEF) or human osteosarcoma Saos-2 cells at G(1), suggesting that this arrest is RB dependent. Importantly, the life span of Ctip(+/-) heterozygotes was shortened by the development of multiple types of tumors, predominantly, large lymphomas. The wild-type Ctip allele and protein remained detectable in these tumors, suggesting that haploid insufficiency of Ctip leads to tumorigenesis. Taken together, this finding uncovers a novel G(1)/S regulation in that CtIP counteracts Rb-mediated G(1) restraint. Deregulation of this function leads to a defect in early embryogenesis and contributes, in part, to tumor formation.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Desarrollo Embrionario/genética , Genes Letales/fisiología , Neoplasias Primarias Múltiples/genética , Proteína de Retinoblastoma/metabolismo , Animales , Blastocisto/fisiología , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Fibroblastos/metabolismo , Fase G1 , Silenciador del Gen , Genes Letales/genética , Haploidia , Heterocigoto , Humanos , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
13.
Nat Commun ; 9(1): 500, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402932

RESUMEN

BMI1, a polycomb group (PcG) protein, plays a critical role in epigenetic regulation of cell differentiation and proliferation, and cancer stem cell self-renewal. BMI1 is upregulated in multiple types of cancer, including prostate cancer. As a key component of polycomb repressive complex 1 (PRC1), BMI1 exerts its oncogenic functions by enhancing the enzymatic activities of RING1B to ubiquitinate histone H2A at lysine 119 and repress gene transcription. Here, we report a PRC1-independent role of BMI1 that is critical for castration-resistant prostate cancer (CRPC) progression. BMI1 binds the androgen receptor (AR) and prevents MDM2-mediated AR protein degradation, resulting in sustained AR signaling in prostate cancer cells. More importantly, we demonstrate that targeting BMI1 effectively inhibits tumor growth of xenografts that have developed resistance to surgical castration and enzalutamide treatment. These results suggest that blocking BMI1 alone or in combination with anti-AR therapy can be more efficient to suppress prostate tumor growth.


Asunto(s)
Adenocarcinoma/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Benzamidas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Trasplante de Neoplasias , Nitrilos , Orquiectomía , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Complejo Represivo Polycomb 1/genética , Neoplasias de la Próstata/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Ubiquitinación , Regulación hacia Arriba
14.
Cancer Res ; 74(6): 1705-17, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24491801

RESUMEN

Histone methyltransferases and demethylases reversibly modulate histone lysine methylation, which is considered a key epigenetic mark associated with gene regulation. Recently, aberrant regulation of gene expression by histone methylation modifiers has emerged as an important mechanism for tumorigenesis. However, it remains largely unknown how histone methyltransferases and demethylases coregulate transcriptional profiles for cancer cell characteristics. Here, we show that in breast cancer cells, the histone H3 lysine 27 (H3K27) demethylase UTX (also known as KDM6A) positively regulates gene expression programs associated with cell proliferation and invasion. The majority of UTX-controlled genes, including a cohort of oncogenes and prometastatic genes, are coregulated by the H3K4 methyltransferase mixed lineage leukemia 4 (MLL4, also called ALR, KMT2D, and MLL2). UTX interacted with a C-terminal region of MLL4. UTX knockdown resulted in significant decreases in the proliferation and invasiveness of breast cancer cells in vitro and in a mouse xenograft model. Such defective cellular characteristics of UTX-depleted cells were phenocopied by MLL4 knockdown cells. UTX-catalyzed demethylation of trimethylated H3K27 and MLL4-mediated trimethylation at H3K4 occurred interdependently at cotarget genes of UTX and MLL4. Clinically, high levels of UTX or MLL4 were associated with poor prognosis in patients with breast cancer. Taken together, these findings uncover that coordinated regulation of gene expression programs by a histone methyltransferase and a histone demethylase is coupled to the proliferation and invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/fisiología , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/fisiología , Proteínas Nucleares/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Femenino , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Metilación , Ratones , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
15.
Cell Biosci ; 3(1): 39, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24172249

RESUMEN

Epigenetic mechanisms are fundamental to understanding the regulatory networks of gene expression that govern stem cell maintenance and differentiation. Methylated histone H3 lysine 4 (H3K4) has emerged as a key epigenetic signal for gene transcription; it is dynamically modulated by several specific H3K4 methyltransferases and demethylases. Recent studies have described new epigenetic mechanisms by which H3K4 methylation modifiers control self-renewal and lineage commitments of stem cells. Such advances in stem cell biology would have a high impact on the research fields of cancer stem cell and regenerative medicine. In this review, we discuss the recent progress in understanding the roles of H3K4 methylation modifiers in regulating embryonic and adult stem cells' fates.

16.
Cell Stem Cell ; 13(1): 48-61, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23684539

RESUMEN

Epigenetic mechanisms regulating lineage differentiation of mammary stem cells (MaSCs) remain poorly understood. Pygopus 2 (Pygo2) is a histone methylation reader and a context-dependent Wnt/ß-catenin coactivator. Here we provide evidence for Pygo2's function in suppressing luminal/alveolar differentiation of MaSC-enriched basal cells. We show that Pygo2-deficient MaSC/basal cells exhibit partial molecular resemblance to luminal cells, such as elevated Notch signaling and reduced mammary repopulating capability upon transplantation. Inhibition of Notch signaling suppresses basal-level and Pygo2-deficiency-induced luminal/alveolar differentiation of MaSC/basal cells, whereas activation of Wnt/ß-catenin signaling suppresses luminal/alveolar differentiation and Notch3 expression in a Pygo2-dependent manner. We show that Notch3 is a direct target of Pygo2 and that Pygo2 is required for ß-catenin binding and maintenance of a poised/repressed chromatin state at the Notch3 locus in MaSC/basal cells. Together, our data support a model where Pygo2-mediated chromatin regulation connects Wnt signaling and Notch signaling to restrict the luminal/alveolar differentiation competence of MaSC/basal cells.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Glándulas Mamarias Animales/citología , Receptores Notch/metabolismo , Células Madre/citología , Proteínas Wnt/metabolismo , Animales , Western Blotting , Linaje de la Célula , Proliferación Celular , Células Epiteliales/metabolismo , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Masculino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch3 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Madre/metabolismo , beta Catenina/metabolismo
17.
Cell Cycle ; 11(1): 79-87, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22186018

RESUMEN

Histone gene expression is tightly controlled during cell cycle. The epigenetic mechanisms underlying this regulation remain to be fully elucidated. Pygopus 2 (Pygo2) is a context-dependent co-activator of Wnt/ß-catenin signaling and a chromatin effector that participates in histone modification. In this study, we show that Pygo2 is required for the optimal expression of multiple classes of histone genes in cultured human mammary epithelial cells. Using chromatin immunoprecipitation assay, we demonstrate that Pygo2 directly occupies the promoters of multiple histone genes and enhances the acetylation of lysine 56 in histone H3 (H3K56Ac), previously shown to facilitate yeast histone gene transcription at these promoters. Moreover, we report reduced global levels of H3K56Ac in Pygo2-depleted cells that occur in a cell cycle-independent manner. Together, our data uncover a novel regulator of mammalian histone gene expression that may act in part via modifying H3K56Ac.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Acetilación , Puntos de Control del Ciclo Celular , Línea Celular , Inmunoprecipitación de Cromatina , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/metabolismo , Glándulas Mamarias Humanas/citología , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
18.
Cell Cycle ; 8(9): 1409-20, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19342888

RESUMEN

CtIP, CtBP-interacting protein, is a nuclear protein that was identified as a cofactor for the transcriptional repressor CtBP. Our genetic studies in mice revealed that haploid insufficiency of CtIP leads to tumorigenesis and is associated with shortened life span. At the molecular level, CtIP is a multivalent adaptor. It interacts directly with pRB family members, the prototype tumor suppressor proteins, and contributes to G(1)/S regulation. It has also been implicated in DNA damage checkpoint control through its interaction with the breast cancer susceptibility gene product BRCA1. Recently, it was found to modulate the nuclease activity of the Mre11/Rad50/NBS1 complex. Here we report that CtIP is recruited to S-phase DNA replication foci through a novel motif functioning as replication foci targeting sequence (RFTS). This motif contains a consensus PCNA-interacting protein box that binds to PCNA both in vivo and in vitro. In support of the biological significance of this interaction, we detected arrest of the cell cycle at the S/G(2) phase transition, and suppression of cell proliferation in U2-OS cells upon the conditional expression of the wild type, but not a mutated RFTS using a tetracycline-inducible system. We found that cells expressing RFTS had excess DNA double strand breaks as demonstrated by formation of gamma-H2AX nuclear foci. Finally, G(2)/M checkpoint activation in response to the expression of the CtIP RFTS is abrogated by caffeine treatment. Our work suggests an intimate relationship between CtIP and PCNA may be important for the maintenance of genomic stability in higher eukaryotic organism.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Daño del ADN , Replicación del ADN , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cafeína/farmacología , Línea Celular Tumoral , Proliferación Celular , Endodesoxirribonucleasas , Proteínas Fluorescentes Verdes , Humanos , Interfase , Mitosis , Datos de Secuencia Molecular , Proteínas Mutantes , Unión Proteica , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad
19.
J Cell Biol ; 185(5): 811-26, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19487454

RESUMEN

Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain-containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/beta-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues beta-catenin-induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/beta-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes.


Asunto(s)
Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Células Madre/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Metilación , Ratones , Fenotipo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Proc Natl Acad Sci U S A ; 102(26): 9176-81, 2005 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-15967981

RESUMEN

Cumulative evidence indicates that breast cancer-associated gene 1 (BRCA1) participates in DNA damage repair and cell-cycle checkpoint control, serving as a tumor susceptibility gene to maintain the global genomic stability. However, whether BRCA1 has a direct role in cell proliferation and differentiation, two key biological functions in tumorigenesis, remains unclear. Here we demonstrate BRCA1 mediates differentiation of mammary epithelial cell (MEC) for acinus formation by using the in vitro 3D culture system. Reduction of BRCA1 in MEC by RNA interference impairs the acinus formation but enhances proliferation. Such aberrations can be rescued by expression of wild-type BRCA1 as well as a mutant at the RAD50-binding domain but not at the C-terminal BRCT domain, suggesting that the C-terminal BRCT domain has a critical role in these processes. Consistently, depletion of BRCA1 up-regulates the gene expression for proliferation but down-regulates that for differentiation. Moreover, application of the medium conditioned by differentiating normal MEC can reverse the phenotypes of differentiation-defective breast cancer cells bearing reduced BRCA1 functions. Our observation implies BRCA1 is involved in secretion of certain paracrine/autocrine factors that induce MEC differentiation in response to extracellular matrix signals, providing, in part, an explanation for the etiological basis of either sporadic or familial breast cancer due to the loss or reduction of BRCA1.


Asunto(s)
Proteína BRCA1/fisiología , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Glándulas Mamarias Humanas/metabolismo , Adenoviridae/genética , Proteína BRCA1/metabolismo , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Vectores Genéticos , Humanos , Imagenología Tridimensional , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Plásmidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , ARN/química , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA