Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Methods ; 19(2): 187-194, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115715

RESUMEN

Single-guide RNAs can target exogenous CRISPR-Cas proteins to unique DNA locations, enabling genetic tools that are efficient, specific and scalable. Here we show that short synthetic guide Piwi-interacting RNAs (piRNAs) (21-nucleotide sg-piRNAs) expressed from extrachromosomal transgenes can, analogously, reprogram the endogenous piRNA pathway for gene-specific silencing in the hermaphrodite germline, sperm and embryos of Caenorhabditis elegans. piRNA-mediated interference ('piRNAi') is more efficient than RNAi and can be multiplexed, and auxin-mediated degradation of the piRNA-specific Argonaute PRG-1 allows conditional gene silencing. Target-specific silencing results in decreased messenger RNA levels, amplification of secondary small interfering RNAs and repressive chromatin modifications. Short (300 base pairs) piRNAi transgenes amplified from arrayed oligonucleotide pools also induce silencing, potentially making piRNAi highly scalable. We show that piRNAi can induce transgenerational epigenetic silencing of two endogenous genes (him-5 and him-8). Silencing is inherited for four to six generations after target-specific sg-piRNAs are lost, whereas depleting PRG-1 leads to essentially permanent epigenetic silencing.


Asunto(s)
Animales Modificados Genéticamente/genética , Caenorhabditis elegans/genética , Silenciador del Gen , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/genética , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Embrión no Mamífero , Epigénesis Genética , Femenino , Masculino
2.
Development ; 145(20)2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30254142

RESUMEN

Nuclear RNA interference provides a unique approach to the study of RNA-mediated transgenerational epigenetic inheritance. A paradox in the field is that expression of target loci is necessary for the initiation and maintenance of their silencing. How expression and repression are coordinated during animal development is poorly understood. To resolve this gap, we took imaging, deep-sequencing and genetic approaches towards delineating the developmental regulation and subcellular localization of RNA transcripts of two representative endogenous targets, the LTR retrotransposons Cer3 and Cer8. By examining wild-type worms and a collection of mutant strains, we found that the expression and silencing cycle of Cer3 and Cer8 is coupled with embryonic and germline development. Strikingly, endogenous targets exhibit a hallmark of nuclear enrichment of their RNA transcripts. In addition, germline and somatic repressions of Cer3 have different genetic requirements for three heterochromatin enzymes, MET-2, SET-25 and SET-32, in conjunction with the nuclear Argonaute protein HRDE-1. These results provide the first comprehensive cellular and developmental characterization of nuclear RNAi activities throughout the animal reproductive cycle.


Asunto(s)
Caenorhabditis elegans/genética , Interferencia de ARN , Retroelementos/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Respuesta al Choque Térmico/genética , Histonas/metabolismo , Lisina/metabolismo , Mitosis , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura , Factores de Tiempo , Transcripción Genética
3.
PLoS Biol ; 16(6): e2005069, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879108

RESUMEN

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas Portadoras/fisiología , Espermatogénesis/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Epistasis Genética , Femenino , Genes de Helminto , Transporte Iónico , Masculino , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Filogenia , Transducción de Señal , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Zinc/metabolismo
4.
Dev Biol ; 436(2): 75-83, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477340

RESUMEN

Successful fertilization requires that sperm are activated prior to contacting an oocyte. In C. elegans, this activation process, called spermiogenesis, transforms round immobile spermatids into motile, fertilization-competent spermatozoa. We describe the phenotypic and genetic characterization of spe-43, a new component of the spe-8 pathway, which is required for spermiogenesis in hermaphrodites; spe-43 hermaphrodites are self-sterile, while spe-43 males show wild-type fertility. When exposed to Pronase to activate sperm in vitro, spe-43 spermatids form long rigid spikes radiating outward from the cell periphery instead of forming a motile pseudopod, indicating that spermiogenesis initiates but is not completed. Using a combination of recombinant and deletion mapping and whole genome sequencing, we identified F09E8.1 as spe-43. SPE-43 is predicted to exist in two isoforms; one isoform appears to be a single-pass transmembrane protein while the other is predicted to be a secreted protein. SPE-43 can bind to other known sperm proteins, including SPE-4 and SPE-29, which are known to impact spermiogenesis. In summary, we have identified a membrane protein that is present in C. elegans sperm and is required for sperm activation via the hermaphrodite activation signal.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Espermatogénesis/genética , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidad/genética , Masculino , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/fisiología , Espermatozoides/fisiología , Secuenciación Completa del Genoma
5.
Nature ; 489(7416): 447-51, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22810588

RESUMEN

Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans. This RNA-mediated interference (RNAi) can be inherited for more than five generations. To understand this process, here we conduct a genetic screen for nematodes defective in transmitting RNAi silencing signals to future generations. This screen identified the heritable RNAi defective 1 (hrde-1) gene. hrde-1 encodes an Argonaute protein that associates with small interfering RNAs in the germ cells of progeny of animals exposed to double-stranded RNA. In the nuclei of these germ cells, HRDE-1 engages the nuclear RNAi defective pathway to direct the trimethylation of histone H3 at Lys 9 (H3K9me3) at RNAi-targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed short interfering RNAs, which direct nuclear gene silencing in germ cells. In hrde-1- or nuclear RNAi-deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Argonaute protein HRDE-1 directs gene-silencing events in germ-cell nuclei that drive multigenerational RNAi inheritance and promote immortality of the germ-cell lineage. We propose that C. elegans use the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Epigénesis Genética/genética , Células Germinativas/metabolismo , Patrón de Herencia/genética , Proteínas Nucleares/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Germinativas/citología , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
6.
Genome Res ; 23(8): 1348-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23636945

RESUMEN

More than half of Caenorhabditis elegans pre-mRNAs lose their original 5' ends in a process termed "trans-splicing" in which the RNA extending from the transcription start site (TSS) to the site of trans-splicing of the primary transcript, termed the "outron," is replaced with a 22-nt spliced leader. This complicates the mapping of TSSs, leading to a lack of available TSS mapping data for these genes. We used growth at low temperature and nuclear isolation to enrich for transcripts still containing outrons, applying a modified SAGE capture procedure and high-throughput sequencing to characterize 5' termini in this transcript population. We report from this data both a landscape of 5'-end utilization for C. elegans and a representative collection of TSSs for 7351 trans-spliced genes. TSS distributions for individual genes were often dispersed, with a greater average number of TSSs for trans-spliced genes, suggesting that trans-splicing may remove selective pressure for a single TSS. Upstream of newly defined TSSs, we observed well-known motifs (including TATAA-box and SP1) as well as novel motifs. Several of these motifs showed association with tissue-specific expression and/or conservation among six worm species. Comparing TSS features between trans-spliced and non-trans-spliced genes, we found stronger signals among outron TSSs for preferentially positioning of flanking nucleosomes and for downstream Pol II enrichment. Our data provide an enabling resource for both experimental and theoretical analysis of gene structure and function in C. elegans.


Asunto(s)
Caenorhabditis elegans/genética , Genes de Helminto , Sitio de Iniciación de la Transcripción , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Secuencia Conservada , Regulación de la Expresión Génica , Anotación de Secuencia Molecular , Especificidad de Órganos , Regiones Promotoras Genéticas , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Trans-Empalme
7.
BMC Genomics ; 15: 1157, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25534009

RESUMEN

BACKGROUND: Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. METHODS: To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. RESULTS: Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. CONCLUSION: Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans.


Asunto(s)
Caenorhabditis elegans/genética , Histonas/química , Histonas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transcripción Genética/genética , Animales , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Caenorhabditis elegans/citología , Cromatina/genética , Perfilación de la Expresión Génica , Lisina/metabolismo , Metilación , ARN Polimerasa II/metabolismo , Retroelementos/genética
8.
Curr Biol ; 33(14): 3048-3055.e6, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37453427

RESUMEN

Fertilization is a fundamental process in sexual reproduction during which gametes fuse to combine their genetic material and start the next generation in their life cycle. Fertilization involves species-specific recognition, adhesion, and fusion between the gametes.1,2 In mammals and other model species, some proteins are known to be required for gamete interactions and have been validated with loss-of-function fertility phenotypes.3,4 Yet, the molecular basis of sperm-egg interaction is not well understood. In a forward genetic screen for fertility mutants in Caenorhabditis elegans, we identified spe-51. Mutant worms make sperm that are unable to fertilize the oocyte but otherwise normal by all available measurements. The spe-51 gene encodes a secreted protein that includes an immunoglobulin (Ig)-like domain and a hydrophobic sequence of amino acids. The SPE-51 protein acts cell autonomously and localizes to the surface of the spermatozoa. We further show that the gene product of the mammalian sperm function gene Sof1 is likewise secreted. This is the first example of a secreted protein required for the interactions between the sperm and egg with genetic validation for a specific function in fertilization in C. elegans (also see spe-365). This is also the first experimental evidence that mammalian SOF1 is secreted. Our analyses of these genes begin to build a paradigm for sperm-secreted or reproductive-tract-secreted proteins that coat the sperm surface and influence their survival, motility, and/or the ability to fertilize the egg.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Masculino , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Fertilización , Interacciones Espermatozoide-Óvulo , Proteínas del Esperma , Dominios de Inmunoglobulinas , Mamíferos
9.
Chromosoma ; 119(1): 73-87, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19705140

RESUMEN

We have characterized two post-translational histone modifications in Caenorhabditis elegans on a genomic scale. Micrococcal nuclease digestion and immunoprecipitation were used to obtain distinct populations of single nucleosome cores, which were analyzed using massively parallel DNA sequencing to obtain positional and coverage maps. Two methylated histone H3 populations were chosen for comparison: H3K4 histone methylation (associated with active chromosomal regions) and H3K9 histone methylation (associated with inactivity). From analysis of the sequence data, we found nucleosome cores with these modifications to be enriched in two distinct partitions of the genome; H3K4 methylation was particularly prevalent in promoter regions of widely expressed genes, while H3K9 methylation was enriched on specific chromosomal arms. For each of the six chromosomes, the highest level of H3K9 methylation corresponds to the pairing center responsible for chromosome alignment during meiosis. Enrichment of H3K9 methylation at pairing centers appears to be an early mark in meiotic chromosome sorting, occurring in the absence of components required for proper pairing of homologous chromosomes. H3K9 methylation shows an intricate pattern within the chromosome arms with a particular anticorrelation to regions that display a strong approximately 10.5 bp periodicity of AA/TT dinucleotides that is known to associate with germline transcription. By contrast to the global features observed with H3K9 methylation, H3K4 methylation profiles were most striking in their local characteristics around promoters, providing a unique promoter-central landmark for 3,903 C. elegans genes and allowing a precise analysis of nucleosome positioning in the context of transcriptional initiation.


Asunto(s)
Caenorhabditis elegans/genética , Ensamble y Desensamble de Cromatina , Genoma , Nucleosomas/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/genética , Histonas/metabolismo , Meiosis , Metilación , Nucleosomas/metabolismo
10.
BMC Biol ; 8: 58, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20459774

RESUMEN

BACKGROUND: Ultra-high throughput sequencing technologies provide opportunities both for discovery of novel molecular species and for detailed comparisons of gene expression patterns. Small RNA populations are particularly well suited to this analysis, as many different small RNAs can be completely sequenced in a single instrument run. RESULTS: We prepared small RNA libraries from 29 tumour/normal pairs of human cervical tissue samples. Analysis of the resulting sequences (42 million in total) defined 64 new human microRNA (miRNA) genes. Both arms of the hairpin precursor were observed in twenty-three of the newly identified miRNA candidates. We tested several computational approaches for the analysis of class differences between high throughput sequencing datasets and describe a novel application of a log linear model that has provided the most effective analysis for this data. This method resulted in the identification of 67 miRNAs that were differentially-expressed between the tumour and normal samples at a false discovery rate less than 0.001. CONCLUSIONS: This approach can potentially be applied to any kind of RNA sequencing data for analysing differential sequence representation between biological sample sets.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Análisis de Secuencia de ADN/métodos , Análisis por Conglomerados , ADN Complementario/genética , Biblioteca de Genes , Modelos Lineales
11.
Cell Rep ; 25(8): 2273-2284.e3, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463021

RESUMEN

The dynamic process by which nuclear RNAi engages a transcriptionally active target, before the repressive state is stably established, remains largely a mystery. Here, we found that the onset of exogenous dsRNA-induced nuclear RNAi in C. elegans is a transgenerational process, and it requires a putative histone methyltransferase (HMT), SET-32. By developing a CRISPR-based genetic approach, we found that silencing establishment at the endogenous targets of germline nuclear RNAi also requires SET-32. Although SET-32 and two H3K9 HMTs, MET-2 and SET-25, are dispensable for the maintenance of silencing, they do contribute to transcriptional repression in mutants that lack the germline nuclear Argonaute protein HRDE-1, suggesting a conditional role of heterochromatin in the maintenance phase. Our study indicates that (1) establishment and maintenance of siRNA-guided transcriptional repression are two distinct processes with different genetic requirements and (2) the rate-limiting step of the establishment phase is a transgenerational, chromatin-based process.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Epigénesis Genética , Heterocromatina/metabolismo , Histona Metiltransferasas/fisiología , Interferencia de ARN , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Histona Metiltransferasas/genética , Histonas/metabolismo , Lisina/metabolismo , Mutación/genética , ARN Bicatenario/metabolismo , Transcripción Genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-28228846

RESUMEN

BACKGROUND: Germline nuclear RNAi in C. elegans is a transgenerational gene-silencing pathway that leads to H3K9 trimethylation (H3K9me3) and transcriptional silencing at the target genes. H3K9me3 induced by either exogenous double-stranded RNA (dsRNA) or endogenous siRNA (endo-siRNA) is highly specific to the target loci and transgenerationally heritable. Despite these features, the role of H3K9me3 in siRNA-mediated transcriptional silencing and inheritance of the silencing state at native target genes is unclear. In this study, we took combined genetic and whole-genome approaches to address this question. RESULTS: Here we demonstrate that siRNA-mediated H3K9me3 requires combined activities of three H3K9 histone methyltransferases: MET-2, SET-25, and SET-32. set-32 single, met-2 set-25 double, and met-2 set-25;set-32 triple mutant adult animals all exhibit prominent reductions in H3K9me3 throughout the genome, with met-2 set-25;set-32 mutant worms losing all detectable H3K9me3 signals. Surprisingly, loss of high-magnitude H3K9me3 at the native nuclear RNAi targets has no effect on the transcriptional silencing state. In addition, the exogenous dsRNA-induced transcriptional silencing and heritable RNAi at oma-1, a well-established nuclear RNAi reporter gene, are completely resistant to the loss of H3K9me3. CONCLUSIONS: Nuclear RNAi-mediated H3K9me3 in C. elegans requires multiple histone methyltransferases, including MET-2, SET-25, and SET-32. H3K9me3 is not essential for dsRNA-induced heritable RNAi or the maintenance of endo-siRNA-mediated transcriptional silencing in C. elegans. We propose that siRNA-mediated transcriptional silencing in C. elegans can be maintained by an H3K9me3-independent mechanism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Histonas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Inmunoprecipitación de Cromatina , Genoma , Inestabilidad Genómica , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Metilación , Microscopía Fluorescente , Mutagénesis , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transcripción Genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-26779286

RESUMEN

BACKGROUND: Environmental stress-induced transgenerational epigenetic effects have been observed in various model organisms and human. The capacity and mechanism of such phenomena are poorly understood. In C. elegans, siRNA mediates transgenerational gene silencing through the germline nuclear RNAi pathway. This pathway is also required to maintain the germline immortality when C. elegans is under heat stress. However, the underlying molecular mechanism is unknown. In this study, we investigated the impact of heat stress on chromatin, transcription, and siRNAs at the whole-genome level, and whether any of the heat-induced effects is transgenerationally heritable in either the wild-type or the germline nuclear RNAi mutant animals. RESULTS: We performed 12-generation temperature-shift experiments using the wild-type C. elegans and a mutant strain that lacks the germline-specific nuclear Argonaute protein HRDE-1/WAGO-9. By examining the mRNA, small RNA, RNA polymerase II, and H3K9 trimethylation profiles at the whole-genome level, we revealed an epigenetic role of HRDE-1 in repressing heat stress-induced transcriptional activation of over 280 genes. Many of these genes are in or near LTR (long-terminal repeat) retrotransposons. Strikingly, for some of these genes, the heat stress-induced transcriptional activation in the hrde-1 mutant intensifies in the late generations under the heat stress and is heritable for at least two generations after the mutant animals are shifted back to lower temperature. hrde-1 mutation also leads to siRNA expression changes of many genes. This effect on siRNA is dependent on both the temperature and generation. CONCLUSIONS: Our study demonstrated that a large number of the endogenous targets of the germline nuclear RNAi pathway in C. elegans are sensitive to heat-induced transcriptional activation. This effect at certain genomic loci including LTR retrotransposons is transgenerational. Germline nuclear RNAi antagonizes this temperature effect at the transcriptional level and therefore may play a key role in heat stress response in C. elegans.

14.
Nat Genet ; 44(2): 157-64, 2012 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-22231482

RESUMEN

Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromatina/metabolismo , Perfilación de la Expresión Génica , Sitios Genéticos , Metilación , Datos de Secuencia Molecular , ARN Bicatenario/farmacología , Análisis de Secuencia de ADN
15.
Genetics ; 183(4): 1297-314, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19805814

RESUMEN

Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Interferencia de ARN , ARN Polimerasa Dependiente del ARN/metabolismo , Espermatogénesis , Espermatozoides/citología , Espermatozoides/enzimología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , División Celular , Supervivencia Celular/genética , Trastornos del Desarrollo Sexual , Regulación hacia Abajo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Masculino , Microtúbulos/metabolismo , Mutación , ARN sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADN , Espermatocitos/citología , Espermatozoides/metabolismo , Cromosoma X/genética
16.
Science ; 323(5912): 401-4, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19074313

RESUMEN

Might DNA sequence variation reflect germline genetic activity and underlying chromatin structure? We investigated this question using medaka (Japanese killifish, Oryzias latipes), by comparing the genomic sequences of two strains (Hd-rR and HNI) and by mapping approximately 37.3 million nucleosome cores from Hd-rR blastulae and 11,654 representative transcription start sites from six embryonic stages. We observed a distinctive approximately 200-base pair (bp) periodic pattern of genetic variation downstream of transcription start sites; the rate of insertions and deletions longer than 1 bp peaked at positions of approximately +200, +400, and +600 bp, whereas the point mutation rate showed corresponding valleys. This approximately 200-bp periodicity was correlated with the chromatin structure, with nucleosome occupancy minimized at positions 0, +200, +400, and +600 bp. These data exemplify the potential for genetic activity (transcription) and chromatin structure to contribute to molding the DNA sequence on an evolutionary time scale.


Asunto(s)
Cromatina/fisiología , ADN/genética , Variación Genética , Nucleosomas/fisiología , Oryzias/genética , Sitio de Iniciación de la Transcripción , Animales , Composición de Base , Secuencia de Bases , Cromatina/ultraestructura , ADN/química , Reparación del ADN , Genoma , Mutación INDEL , Mutagénesis , Mutación , Nucleosomas/ultraestructura , Oryzias/embriología , Mutación Puntual , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA