Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 148(16): 1231-1249, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37609838

RESUMEN

BACKGROUND: Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS: Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS: Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS: This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.


Asunto(s)
Linfedema , Selectina-P , Humanos , Ratones , Animales , Transducción de Señal , Inflamación/patología , Linfedema/patología
2.
Lab Anim (NY) ; 53(2): 43-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297075

RESUMEN

The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined the multitissue microbial biogeography of healthy Fischer 344 rats across their lifespan. Microbial community profiling data were extracted and integrated with host transcriptomic data from the Sequencing Quality Control consortium. Unsupervised machine learning, correlation, taxonomic diversity and abundance analyses were performed to determine and characterize the rat microbial biogeography and identify four intertissue microbial heterogeneity patterns (P1-P4). We found that the 11 body habitats harbored a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundance progressively declined in lungs from breastfed newborn to adolescence/adult, and was below detectable levels in elderly rats. Bioinformatics analyses indicate that the abundance of LAB may be modulated by the lung-immune axis. The presence and levels of LAB in lungs were further evaluated by PCR in two validation datasets. The lung, testes, thymus, kidney, adrenal and muscle niches were found to have age-dependent alterations in microbial abundance. The 357 microbial signatures were positively correlated with host genes in cell proliferation (P1), DNA damage repair (P2) and DNA transcription (P3). Our study established a link between the metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures could be useful for microbiome therapeutic approaches to human health and life quality enhancement.


Asunto(s)
Lactobacillales , Microbiota , Humanos , Ratas , Animales , Bacterias , Pulmón/microbiología , Microbiota/genética
3.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37293045

RESUMEN

The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined a multi-tissue full lifespan microbial biogeography for healthy Fischer 344 rats. Microbial community profiling data was extracted and integrated with host transcriptomic data from the Sequencing Quality Control (SEQC) consortium. Unsupervised machine learning, Spearman's correlation, taxonomic diversity, and abundance analyses were performed to determine and characterize the rat microbial biogeography and the identification of four inter-tissue microbial heterogeneity patterns (P1-P4). The 11 body habitats harbor a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundances progressively declined in lungs from breastfeed newborn to adolescence/adult and was below detectable levels in elderly rats. LAB's presence and levels in lungs were further evaluated by PCR in the two validation datasets. The lung, testes, thymus, kidney, adrenal, and muscle niches were found to have age-dependent alterations in microbial abundance. P1 is dominated by lung samples. P2 contains the largest sample size and is enriched for environmental species. Liver and muscle samples were mostly classified into P3. Archaea species were exclusively enriched in P4. The 357 pattern-specific microbial signatures were positively correlated with host genes in cell migration and proliferation (P1), DNA damage repair and synaptic transmissions (P2), as well as DNA transcription and cell cycle in P3. Our study established a link between metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures would be useful for microbiome therapeutic approaches to human health and good quality of life.

4.
medRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398237

RESUMEN

BACKGROUND: Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS: Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS: Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION: This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective: What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA