Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Res Rev ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152525

RESUMEN

5-(3'-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3'-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3'-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3'-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3'-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3'-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3'-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.

2.
J Am Chem Soc ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370618

RESUMEN

Kendomycin B is distinguished from other ansamycins by its unique, fully carbogenic ansa scaffold. We show here that FAD-dependent monooxygenase Kmy13 is solely responsible for installing the rare ansa structural framework; in vivo gene disruption/complementation experiments and in vitro enzymatic assays are described in detail. Moreover, the compound with a ß-keto ester, kendolactone A (2), was confirmed as the natural substrate of Kmy13 and a bona fide biosynthetic intermediate en route to kendomycin B. Further structural prediction and biochemical assays have provided significant insights into the catalytic mechanism of Kmy13.

3.
Anal Chem ; 96(11): 4463-4468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38462969

RESUMEN

The surge in applications of nitrile compounds across diverse fields, such as pharmaceuticals, agrochemicals, dyes, and functional materials, necessitates the development of rapid and efficient detection and identification methods. In this study, we introduce a chemosensing strategy employing a novel 19F-labeled probe, facilitating swift and accurate analysis of a broad spectrum of nitrile-containing analytes. This approach leverages the reversible interaction between the 19F-labeled probe and the analytes to produce chromatogram-like outputs, ensuring the precise identification of various pharmaceuticals and pesticides within complex matrices. Additionally, this dynamic system offers a versatile platform to investigate through-space 19F-19F interactions, showcasing its potential for future applications in mechanistic studies.

4.
Anal Chem ; 96(28): 11448-11454, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38960938

RESUMEN

Within pharmaceutical research, ensuring the enantiomeric purity of chiral compounds is critical. Specifically, chiral amines are a crucial category of compounds, due to their extensive therapeutic uses. However, the enantiomeric analysis of these compounds, particularly those with significant steric hindrance, remains a challenge. To address this issue, our research introduces a novel chiral 19F-tagged NNO palladium pincer probe, strategically engineered with an open binding site to accommodate bulky amines. This probe facilitates the enantiodifferentiation of such amines, as evidenced by the distinct 19F NMR signals generated by the enantiomers. Moreover, our findings highlight the probe's applicability in the chiral discrimination of various psychoactive substances, underscoring its potential for the identification of illegal stimulant use and contributing to forensic investigations.

5.
Chemistry ; 30(31): e202400237, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38556465

RESUMEN

Heterocyclic trifluoromethylation is efficiently initiated through a photochemical reaction utilizing an electron donor-acceptor (EDA) complex, proceeding smoothly without the use of photocatalysts, transition-metal catalysts, or additional oxidants. This method has been optimized through extensive experimentation, demonstrating its versatility and efficacy across various substrates, including quinoxalinones, coumarins, and indolones. Notably, this approach enables the practical synthesis of trifluoromethylated quinoxalinones on a gram scale. Mechanistic investigations that incorporate radical trapping and ultraviolet/visible spectroscopy, confirmed the formation of the an EDA complex and elucidated the reaction pathways. This study highlights the crucial role of EDA photoactivation in trifluoromethylation, significantly expanding the application scope of EDA complexes in chemical synthesis.

6.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713233

RESUMEN

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Asunto(s)
Aldehídos , Alcaloides de Claviceps , Aldehídos/metabolismo , Aldehídos/química , Dominio Catalítico , Alcaloides de Claviceps/biosíntesis , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química
7.
Mar Drugs ; 22(10)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39452839

RESUMEN

The incidence of Mycobacterium marinum infection is on the rise; however, the existing drug treatment cycle is lengthy and often requires multi-drug combination. Therefore, there is a need to develop new and effective anti-M. marinum drugs. Cochliomycin A, a 14-membered resorcylic acid lactone with an acetonide group at C-5' and C-6', exhibits a wide range of antimicrobial, antimalarial, and antifouling activities. To further explore the effect of this structural change at C-5' and C-6' on this compound's activity, we synthesized a series of compounds with a structure similar to that of cochliomycin A, bearing ketal groups at C-5' and C-6'. The R/S configuration of the diastereoisomer at C-13' was further determined through an NOE correlation analysis of CH3 or CH2 at the derivative C-13' position and the H-5' and H-6' by means of a 1D NOE experiment. Further comparative 1H NMR analysis of diastereoisomers showed the difference in the chemical shift (δ) value of the diastereoisomers. The synthetic compounds were screened for their anti-microbial activities in vitro. Compounds 15-24 and 28-35 demonstrated promising activity against M. marinum, with MIC90 values ranging from 70 to 90 µM, closely approaching the MIC90 of isoniazid. The preliminary structure-activity relationships showed that the ketal groups with aromatic rings at C-5' and C-6' could enhance the inhibition of M. marinum. Further study demonstrated that compounds 23, 24, 29, and 30 had significant inhibitory effects on M. marinum and addictive effects with isoniazid and rifampicin. Its effective properties make it an important clue for future drug development toward combatting M. marinum resistance.


Asunto(s)
Antibacterianos , Lactonas , Pruebas de Sensibilidad Microbiana , Mycobacterium marinum , Mycobacterium marinum/efectos de los fármacos , Lactonas/farmacología , Lactonas/química , Lactonas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Animales , Organismos Acuáticos , Estructura Molecular , Estereoisomerismo
8.
Chem Biodivers ; : e202401966, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319381

RESUMEN

Deep-sea derived fungi are considered as significant resources to discovery structurally diverse and biologically active natural compounds. In this study, four new sulfurated butyrolactones, penijanthiones A-D (1-4), together with four known analogues (5-8), were isolated from a Mariana Trench-derived fungus Penicilliumjanthinellum SH0301. Compounds 1-4 were the undescribed examples for natural butyrolactones coupling with a mercaptolactate moiety. Their structures including the absolute configurations of these new compounds were elucidated by comprehensive spectroscopic data, and calculated electronic circular dichroism (ECD). The plausible biosynthetic pathway of sulfur-incorporation of 1-4 was proposed. All of these isolated compounds were evaluated their cytotoxic, antimicrobial and antiviral activities.

9.
Chem Biodivers ; 21(6): e202400519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576052

RESUMEN

One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Poríferos , Esteroides , Animales , Poríferos/química , Esteroides/química , Esteroides/aislamiento & purificación , Esteroides/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , China , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/citología , Línea Celular , Conformación Molecular , Estructura Molecular
10.
Chem Biodivers ; 21(8): e202401093, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867371

RESUMEN

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.


Asunto(s)
Apiaceae , Cumarinas , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Apiaceae/química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Relación Estructura-Actividad , Nitrilos/química
11.
J Asian Nat Prod Res ; : 1-13, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373692

RESUMEN

Three previously undescribed coumarins (1-3) were obtained from the roots of Notopterygium incisum. Their chemical structures were elucidated using a variety of spectroscopic techniques and chemical calculations. The inhibitory effects of these new compounds on NO production and pro-inflammatory factors (IL-1ß, IL-6, and TNF-α) in LPS-stimulated RAW 264.7 cells were investigated. Further studies revealed that compound 1 suppressed the expression of COX-2 and iNOS while also reduced ROS accumulation. Western blot analysis demonstrated that compound 1 could inhibit the PI3K/AKT pathway by decreasing the levels of p-PI3K and p-AKT. Collectively, these findings suggest that compounds 1-3 exhibit promising anti-inflammatory properties.

12.
J Am Chem Soc ; 145(44): 23910-23917, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883710

RESUMEN

The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.

13.
Chemistry ; 29(26): e202300055, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807385

RESUMEN

Nanolobatone A, featuring an unprecedented tricyclo[10.3.0.01,2 ]pentadecane carbon skeleton, along with four new polyoxygenated and four unusual endoperoxide-bridged casbane-type diterpenoids were isolated from the Hainan soft coral Sinularia nanolobata. The structures of the new compounds were established by extensive spectroscopic analysis, X-ray diffraction analysis, and time-dependent density functional theory/electronic circular dichroism calculations. A plausible biosynthetic pathway of new isolates was proposed. Bioassays revealed that nanolobatone A showed weak antibacterial activity against the Gram-positive bacteria Streptococcus pyogenes.


Asunto(s)
Antozoos , Diterpenos , Animales , Estructura Molecular , Antozoos/química , Diterpenos/química , Dicroismo Circular , Cristalografía por Rayos X
14.
Chem Rec ; 23(9): e202300071, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37098875

RESUMEN

Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.

15.
Chem Rec ; 23(5): e202300020, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995073

RESUMEN

Carbon-heteroatom bond formation under transition-metal free conditions provides a powerful synthetic alternative for the efficient synthesis of valuable molecules. In particular, C-N and C-O bonds are two important types of carbon-heteroatom bonds. Thus, continuous efforts have been deployed to develop novel C-N/C-O bond formation methodologies involving various catalysts or promoters under TM-free conditions, which enables the synthesis of various functional molecules comprising C-N/C-O bonds in a facile and sustainable manner. Considering the significance of C-N/C-O bond construction in organic synthesis and materials science, this review aims to comprehensively present selected examples on the construction of C-N (including amination and amidation) and C-O (including etherification and hydroxylation) bonds without transition metals. Besides, the involved promoters/catalysts, substrate scope, potential application and possible reaction mechanisms are also systematically discussed.

16.
J Org Chem ; 88(13): 9372-9380, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343224

RESUMEN

Visible-light-induced decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids with [Me4N][SeCF3], oxidant, and catalysts afforded a variety of (hetero)aryl trifluoromethyl selenoethers in good yields. The reaction might involve a radical process, which generated (hetero)aryl radicals from the stable (hetero)aromatic carboxylic acids via oxidative decarboxylation with NFSI as the oxidant, [di-tBu-Mes-Acr-Ph][BF4] as the photocatalyst, and 1,1'-biphenyl as the cocatalyst. Both catalysts had a decisive influence on the reaction. The trifluoromethylselenolation was further promoted by the copper salts probably via Cu-mediated cross-coupling of the sensitive SeCF3 species with the in situ formed (hetero)aryl radicals. Advantages of the method include visible light irradiation, mild reaction conditions at ambient temperature, good functional group tolerance, no pre-functionalization/activation of the starting carboxylic acids, and applicability to drug molecules. This protocol is promising and synthetically useful, which overcame the limitations of the known trifluoromethylselenolation methods and represented the first decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids.


Asunto(s)
Ácidos Carboxílicos , Cobre , Cobre/química , Descarboxilación , Ácidos Carbocíclicos , Ácidos Carboxílicos/química , Oxidantes
17.
J Nat Prod ; 86(1): 176-181, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36634313

RESUMEN

Six new azoxy-aromatic compounds (o-alkylazoxymycins A-F, 1-6) and two new nitrogen-bearing phenylvaleric/phenylheptanoic acid derivatives (o-alkylphemycins A and B, 7 and 8) were isolated from Streptomyces sp. Py50. Their structures were elucidated based on HRESIMS, NMR, UV spectroscopic analyses, and X-ray crystallographic data. O-Alkylazoxymycins A-F (1-6) are the first natural examples of azoxy compounds with the azoxy bond attached to the ortho-position of the phenylheptanoic acid or phenylvaleric acid moiety. Compounds 1, 5, and 6 were active against Epidermophyton floccosum with MIC50 values ranging from 10.1 to 51.2 µM. A plausible biosynthetic pathway of 2 and 3 was proposed.


Asunto(s)
Streptomyces , Streptomyces/química , Espectroscopía de Resonancia Magnética , Compuestos Azo/química , Cristalografía por Rayos X , Vías Biosintéticas , Estructura Molecular
18.
Bioorg Chem ; 134: 106442, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878064

RESUMEN

Dual inhibitors of JAK2 and FLT3 can synergistically control the development of acute myeloid leukemia (AML), and overcome secondary drug resistance of AML that is associated with FLT3 inhibition. We therefore designed and synthesized a series of 4-piperazinyl-2-aminopyrimidines as dual inhibitors of JAK2 and FLT3, and improved their selectivity for JAK2. Screening cascades revealed that compound 11r exhibited inhibitory activity with IC50 values of 2.01, 0.51, and 104.40 nM against JAK2, FLT3, and JAK3, respectively. Compound 11r achieved a high selectivity for JAK2 at a ratio of 51.94, and also showed potent antiproliferative activity in HEL (IC50 = 1.10 µM) and MV4-11 (IC50 = 9.43 nM) cell lines. In an in vitro metabolism assay, 11r exhibited moderate stability in human liver microsomes (HLMs), with a half-life time of 44.4 min, and in rat liver microsomes (RLMs), with a half-life of 143 min. In pharmacokinetic studies, compound 11r showed moderate absorption (Tmax = 5.33 h), with a peak concentration of 38.7 ng/mL and an AUC of 522 ng h/mL in rats, and an oral bioavailability of 25.2%. In addition, 11r induced MV4-11 cell apoptosis in a dose-dependent manner. These results indicate that 11r is a promising selective JAK2/FLT3 dual inhibitor.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Ratas , Humanos , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Microsomas Hepáticos/metabolismo , Apoptosis , Tirosina Quinasa 3 Similar a fms/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Janus Quinasa 2/metabolismo
19.
J Sep Sci ; 46(8): e2200883, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820810

RESUMEN

The Panxi area in Sichuan Province is the main area for the production of truffles in China, and several species of truffle are known to exist in this region. Nevertheless, it is unclear what the differences in chemical composition between the truffles are. Using an ultra-high-performance liquid chromatography quadrupole/orbitrap high-resolution mass spectrometry coupled with Compound Discoverer 3.0, we identified chemical components in three mainly known truffles from the Panxi region. Further analysis of chemical composition differences was conducted using principal component analysis, and orthogonal partial least squares discriminant analysis. Note that, 78.9% of the variance was uncovered by the principal component analysis model. As a result of the orthogonal partial least squares discriminant analysis model, the three species of truffles (Tuber pesudohimalayense, Tuber indicum, and Tuber sinense) from Panxi were better discriminated, with R2 X, R2 Y, and Q2 being 0.821, 0.993, and 0.947, respectively. In this study, 87 components were identified. T. pesudohimalayense contained significantly higher levels of nine different compounds than the other two species. Hence, it was possible to identify similarities and differences between three species of truffles from Panxi in terms of chemical composition. This can be used as a basis for quality control.


Asunto(s)
Espectrometría de Masas , China , Análisis Discriminante
20.
Mar Drugs ; 21(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367687

RESUMEN

Fifteen new diterpenoids, namely xishaklyanes A-O (1-15), along with three known related ones (16-18), were isolated from the soft coral Klyxum molle collected from Xisha Islands, South China Sea. The stereochemistry of the new compounds was elucidated by a combination of detailed spectroscopic analyses, chemical derivatization, quantum chemical calculations, and comparison with the reported data. The absolute configuration of compound 18 was established by the modified Mosher's method for the first time. In bioassay, some of these compounds exhibited considerable antibacterial activities on fish pathogenic bacteria, and compound 4 showed the most effective activity with MIC of 0.225 µg/mL against Lactococcus garvieae.


Asunto(s)
Antozoos , Diterpenos , Animales , Antozoos/química , Diterpenos/química , China , Antibacterianos/farmacología , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA