Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28648777

RESUMEN

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Neoplasias Encefálicas/enzimología , Cisteína/metabolismo , Glioblastoma/enzimología , Glutamina/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glutatión/biosíntesis , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Fosforilación , Unión Proteica , Proteómica/métodos , Interferencia de ARN , Serina , Serina-Treonina Quinasas TOR/genética , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección , Microambiente Tumoral
2.
Nat Chem Biol ; 18(10): 1065-1075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35788181

RESUMEN

Aldehyde dehydrogenases (ALDHs) are promising cancer drug targets, as certain isoforms are required for the survival of stem-like tumor cells. We have discovered selective inhibitors of ALDH1B1, a mitochondrial enzyme that promotes colorectal and pancreatic cancer. We describe bicyclic imidazoliums and guanidines that target the ALDH1B1 active site with comparable molecular interactions and potencies. Both pharmacophores abrogate ALDH1B1 function in cells; however, the guanidines circumvent an off-target mitochondrial toxicity exhibited by the imidazoliums. Our lead isoform-selective guanidinyl antagonists of ALDHs exhibit proteome-wide target specificity, and they selectively block the growth of colon cancer spheroids and organoids. Finally, we have used genetic and chemical perturbations to elucidate the ALDH1B1-dependent transcriptome, which includes genes that regulate mitochondrial metabolism and ribosomal function. Our findings support an essential role for ALDH1B1 in colorectal cancer, provide molecular probes for studying ALDH1B1 functions and yield leads for developing ALDH1B1-targeting therapies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehídos , Neoplasias del Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Guanidinas , Humanos , Sondas Moleculares , Proteoma/genética
3.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 221-225, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715381

RESUMEN

Lung cancer remains the leading cause of cancer morbidity and mortality worldwide, and over-diagnosis causes various unnecessary losses in patients' lives and health. How to more effectively screen lung cancer patients and their potential prognostic risk become the focus of our current study. By analyzing the LUAD expression profile in The Cancer Genome Atlas (TCGA), we constructed a weighted gene co-expression network using differentially expressed genes (DEGs) to find the key modules and pivotal genes. A COX proportional risk regression model based on the least absolute shrinkage and selection operator (LASSO) was used to assess the predictive value of the model for the prognosis of LUAD patients. A total of 4107 up-regulated DEGs and 2022 down-regulated DEGs were identified in this study, and enrichment analysis showed that these analyzes were associated with the extracellular matrix of cells and adhesion. Ten gene markers consisting of LDHA, TOP2A, UBE2C, TYMS, TRIP13, EXO1, TTK, TPX2, ZWINT, and UHRF1 were established by extracting the central genes in the key modules, and the upregulation of these genes was accompanied by an increased prognostic risk of patients. Among them, high expression of LDHA, TRIP13, and TTK in LUAD was associated with shorter overall survival and could be used as independent prognostic factors to participate in metabolic processes such as tumor NAD. The present study provides a powerful molecular target for the study of LUAD prognosis and provides a theoretical basis for the diagnosis and treatment of LUAD and the development of targeted inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Biología Computacional , Matriz Extracelular , Proteínas Potenciadoras de Unión a CCAAT , Ubiquitina-Proteína Ligasas , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Ciclo Celular
4.
Mar Drugs ; 21(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888452

RESUMEN

Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.


Asunto(s)
Neoplasias , Sirtuinas , Humanos , Ratones , Animales , Transducción de Señal , Neovascularización Patológica/metabolismo , Pez Cebra/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Sirtuinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana
5.
J Fish Dis ; 46(2): 165-176, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423261

RESUMEN

The infectious spleen and kidney necrosis virus (ISKNV) is a highly lethal virus, which has brought significant losses to aquaculture. Therefore, a new vaccine against ISKNV with high efficiency, safety and convenience must be developed. While baculoviruses are more commonly used as protein expression systems for vaccine antigen production, this paper used baculovirus technology to develop a live-vector vaccine, BacMCP, which contains the coding sequence of the major capsid protein (MCP) (GenBank accession no. AF371960) of ISKNV and is driven by a CMV promoter. Real-time PCR and immunofluorescence showed that the MCP gene was successfully delivered to and expressed in fish cells and tissues inoculated with BacMCP. Immune-related gene (IgM, TGF-ß, IL-1, IL-8, TNF-α) expression was induced in BacMCP-treated groups of largemouth bass compared with control groups. Specific antibodies could be detected in the serum of BacMCP injection-vaccinated largemouth bass by ELISA. After injection or immersion vaccination with BacMCP for 21 days, largemouth bass were infected with ISKNV. The immune effect of the injected immunization on fish in different sizes was evaluated. The vaccine efficacy of injection-vaccinated bass was 100% in small bass and 85.7% in large bass. The vaccine efficacy of immersion-vaccinated small bass was 77.3%. This study suggested that BacMCP can be used as a vector-based vaccine candidate to prevent the diseases caused by ISKNV infection.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Vacunas Sintéticas , Proteínas de la Cápside/genética , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/veterinaria
6.
Molecules ; 28(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959665

RESUMEN

Acute kidney injury (AKI) is a complication of a wide range of serious illnesses for which there is still no better therapeutic agent. We demonstrated that M-18C has a favorable inhibitory effect on monoacylglycerol lipase (MAGL), and several studies have demonstrated that nerve inflammation could be effectively alleviated by inhibiting MAGL, suggesting that M-18C has good anti-inflammatory activity. In this study, we investigated the effect of M-18C on LPS-induced acute kidney injury (AKI), both in vivo and in vitro, by using liquid chromatography-mass spectrometry (LC-MS), 16S rRNA gene sequencing, Western blot, and immunohistochemistry. The results showed that both in vivo and in vitro M-18C reduced the release of TNF-α and IL-1ß by inhibiting the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) protein; in addition, M-18C was able to intervene in LPS-induced AKI by ameliorating renal pathological injury, repairing the intestinal barrier, and regulating gut bacterial flora and serum metabolism. In conclusion, this study suggests that M-18C has the potential to be a new drug for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Microbioma Gastrointestinal , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Monoacilglicerol Lipasas , Lipopolisacáridos/efectos adversos , ARN Ribosómico 16S , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Inflamasomas/metabolismo
7.
Biochem Biophys Res Commun ; 512(2): 269-275, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30885438

RESUMEN

The antineoplastic activity of host defense peptide Hymenochirin-1B, has been extensively studied. However, the mechanism still remains unknown. In this study, linear peptide, Hymenochirin-1B, was synthesized via solid-phase peptide synthesis and evaluated for its anticancer efficacy. We found Hymenochirin-1B induced lung cancer cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, Hymenochirin-1B could enter the cells and colocalized with mitochondria. Furthermore, decrease of mitochondrial membrane potential, increase of reactive oxygen species and the expression of apoptosis-associated protein (Bax/Bcl-2 ratio and activated Caspase-3) were observed in NCI-H1299 and A549 cells after Hymenochirin-1B treatment, suggesting that Hymenochirin-1B induced apoptosis via mitochondrial pathway. Our results provide new insights on the anticancer mechanism of Hymenochirin-1B, which may contribute to its further development into an antineoplastic drug in the future.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ensayo de Tumor de Célula Madre , Proteína X Asociada a bcl-2/metabolismo
8.
Fish Shellfish Immunol ; 92: 101-110, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31163296

RESUMEN

Cyprinid herpesvirus II (CyHV-2) is highly contagious and pathogenic to Carassius auratus gibelio (gibel carp), causing enormous economic losses in aquaculture in Yancheng city, Jiangsu province, China; however, to date, there is no effective way to protect C. auratus gibelio from CyHV-2 infection. In this study, a recombinant baculovirus vector vaccine, BacCarassius-D4ORFs, containing a fused codon-optimized sequence D4ORFs comprising the ORF72 (region 1-186 nt), ORF66 (region 993-1197 nt), ORF81 (region 603-783 nt) and ORF82 (region 85-186 nt) genes of CyHV-2, driven by a Megalobrama amblycephala ß-actin promoter, was constructed. Then, qPCR, Western blotting and immunofluorescence assays showed that the fused gene D4ORFs was successfully delivered and expressed in fish cells or tissues by transduction with BacCarassius-D4ORFs. The fused gene D4ORFs could not be detected by PCR in the C. auratus gibelio injected with BacCarassius-D4ORFs after 7 weeks. Specific antibody against ORF72 could be detected in the serum of vaccinated C. auratus gibelio by injection with BacCarassius-D4ORFs. Furthermore, when C. auratus gibelio were vaccinated with BacCarassius-D4ORFs via the oral or injection route, followed by challenge with CyHV-2, the relative survival rate of immunized C. auratus gibelio reached 59.3% and 80.01%, respectively. These results suggested that BacCarassius-D4ORFs has the potential to be used as a vector-based vaccine for the prevention and treatment of disease caused by CyHV-2 infection.


Asunto(s)
Enfermedades de los Peces/prevención & control , Carpa Dorada/inmunología , Herpesviridae/inmunología , Vacunas contra Herpesvirus/inmunología , Animales , Genes Virales , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Sistemas de Lectura Abierta , Vacunas Atenuadas/inmunología
9.
Fish Shellfish Immunol ; 94: 50-57, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31470136

RESUMEN

Circular RNAs (circRNAs) with regulatory potency activity was identified from varieties of species. Crucian carp (Carassius auratus gibelio) is one of the most freshwater aquaculture species in China. Every year, huge economic damage to the farming was caused by the virus and bacterial infection. Until now, there is any information about circRNA reported from the Crucian carp. In this study, the expression pattern of circRNA in Crucian carp was investigated with transcriptomic analysis. The results showed that only 37 circRNAs were identified from the Crucian carp, and these circRNAs biogenesis was formed with canonical GU-AG splicing mechanism with unevenly distributed on the chromosomes. Wherein, most of the circRNAs were derived from the sense overlapping strategy. Reverse transcript PCR and Sanger sequencing data indicated that these circRNAs were existed authenticity in Crucian carp. The bioinformatics analysis indicated that circRNAs identified from the Crucian carp with potential miRNA sponge regulate the expression level of mRNAs. GO annotation and KEGG pathway analysis of these circRNAs showed that more than 20% circRNAs were related with catalytic activity and binding in the category of molecular function, and these circRNAs were enriched in 9 signaling pathways, such as, Wnt signaling pathway, MAPK signaling pathway, Ubiquitin mediated proteolysis et al. 220 mRNAs would be regulated by the circRNAs via miRNAs mediation. These target mRNAs were further analyzed with functional annotation and KEGG analysis. GO annotation analysis showed that several genes were related with function of nucleotide binding, transcription regulatory activity. KEGG pathway analysis showed that 5 genes were enriched in the pathway of Endocytosis. The circRNA-miRNA-mRNA regulation network indicated that one miRNA can link one or more circRNA and one or more mRNA. Overall, these results will not only help us to further understand the novel RNA transcripts in Crucian carp, but also provide the novel clue to investigate the interaction between host and pathogens from this novel circRNA molecule.


Asunto(s)
Carpas/genética , ARN Circular/genética , Transducción de Señal/inmunología , Animales , Secuencia de Bases , Carpas/inmunología , Biología Computacional , Perfilación de la Expresión Génica/veterinaria , ARN Circular/inmunología , ARN Circular/metabolismo , Transducción de Señal/genética
10.
Glycobiology ; 28(12): 949-957, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462203

RESUMEN

O-GlcNAcylation is a ubiquitous and dynamic post-translational modification on serine/threonine residues of nucleocytoplasmic proteins in metazoa, which plays a critical role in numerous physiological and pathological processes. But the O-GlcNAcylation on most proteins is often substoichiometric, which hinders the functional study of the O-GlcNAcylation. This study aimed to improve the production of highly O-GlcNAcylated recombinant proteins in Escherichia coli (E. coli). To achieve this goal, we constructed a bacterial artificial chromosome-based chloramphenicol-resistant expression vector co-expressing O-GlcNAc transferase (OGT) and key enzymes (phosphoglucose mutase, GlmM and N-acetylglucosamine-1-phosphate uridyltransferase, GlmU) of the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis pathway in E. coli, which can effectively increase the O-GlcNAcylation of the OGT target protein expressed by another vector. The results revealed that the expression of GlmM and GlmU increases the cellular concentration of UDP-GlcNAc in E. coli, which markedly enhanced the activity of the co-expressed OGT to its target proteins, such as H2B, p53 and TAB1. Altogether, we established a widely compatible E. coli expression system for producing highly O-GlcNAcylated protein, which could be used for modifying OGT target proteins expressed by almost any commercial expression vectors in E. coli. This new expression system provides possibility for investigating the roles of O-GlcNAcylation in the enzymatic activity, protein-protein interaction and structure of OGT target proteins.


Asunto(s)
Acetilglucosamina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética
11.
Glycobiology ; 28(7): 482-487, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688431

RESUMEN

O-linked N-acetyl-ß-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies thousands of proteins. However, the roles and mechanisms of O-GlcNAcylation have been clarified in only a few proteins, and one of the main reasons for this is the lack of site-specific anti-O-GlcNAc antibodies. Recently, we found that SIRT1, which is an NAD+-dependent deacetylase, is O-GlcNAcylated at the serine 549 site (S549) and plays a cytoprotective role under stress. However, the mechanism underlying the roles of SIRT1 O-GlcNAcylation remains unclear. Here, we describe a site-specific antibody for SIRT1 O-GlcNAcylated at S549, named SIRT1-549-O. This antibody can be used for immunoprecipitation and western blotting assays, and it can be used to recognize the endogenous levels of both human and mouse SIRT1 O-GlcNAcylation. Therefore, this antibody not only provides an effective method to further understand the roles of SIRT1 O-GlcNAcylation but also makes it possible to discover the genetic and pharmacological factors that could regulate SIRT1 activity by modulating its O-GlcNAcylation.


Asunto(s)
Anticuerpos/inmunología , Procesamiento Proteico-Postraduccional , Sirtuina 1/inmunología , Células 3T3 , Animales , Especificidad de Anticuerpos , Femenino , Glicosilación , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Conejos , Sirtuina 1/metabolismo
12.
Prep Biochem Biotechnol ; 47(7): 699-702, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28296566

RESUMEN

O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3',5,5'-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Quinasa de la Caseína II/metabolismo , Enzimas Inmovilizadas/metabolismo , Humanos , Especificidad por Sustrato
13.
Mol Cell Biochem ; 410(1-2): 101-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318312

RESUMEN

Dysregulated MAPK/ERK signaling is implicated in one-third of human tumors and represents an attractive target for the development of anticancer drugs. Similarly, elevated protein O-GlcNAcylation and O-GlcNAc transferase (OGT) are detected in various cancers and serve as attractive novel cancer-specific therapeutic targets. However, the potential connection between them remains unexplored. Here, a positive correlation was found between the activated MAPK/ERK signaling and hyper-O-GlcNAcylation in various cancer types and inhibition of the MAPK/ERK signaling by 10 µM U0126 significantly decreased the expression of OGT and O-GlcNAcylation in H1299, BPH-1 and DU145 cells; then, the pathway analysis of the potential regulators of OGT obtained from the UCSC Genome Browser was done, and ten downstream targets of ERK pathway were uncovered; the following results showed that ELK1, one of the ten targets of ERK pathway, mediated ERK signaling-induced OGT upregulation; finally, the MTT assay and the soft agar assay showed that the inhibition of MAPK/ERK signaling reduced the promotion effect of hyper-O-GlcNAcylation on cancer cell proliferation and anchorage-independent growth. Taken together, our data originally provided evidence for the regulatory mechanism of hyper-O-GlcNAcylation in tumors, which will be helpful for the development of anticancer drugs targeting to hyper-O-GlcNAcylation. This study also provided a new mechanism by which MAPK/ERK signaling-enhanced cancer malignancy. Altogether, the recently discovered oncogenic factor O-GlcNAc was linked to the classical MAPK/ERK signaling which is essential for the maintenance of malignant phenotype of cancers.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias/enzimología , Procesamiento Proteico-Postraduccional , Antineoplásicos/farmacología , Butadienos/farmacología , Línea Celular Tumoral , Proliferación Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Glicosilación , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Interferencia de ARN , Transfección , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
14.
Int J Biol Macromol ; 262(Pt 2): 130055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354922

RESUMEN

Aberrant epidermal growth factor receptor (EGFR) signaling is the core signaling commonly activated in glioma. The transmembrane emp24 protein transport domain protein 2 (TMED2) interacts with cargo proteins involved in protein sorting and transport between endoplasmic reticulum (ER) and Golgi apparatus. In this study, we found the correlation between TMED2 with glioma progression and EGFR signaling through database analysis. Moreover, we demonstrated that TMED2 is essential for glioma cell proliferation, migration, and invasion at the cellular levels, as well as tumor formation in mouse models, underscoring its significance in the pathobiology of gliomas. Mechanistically, TMED2 was found to enhance EGFR-AKT signaling by facilitating EGFR recycling, thereby providing the initial evidence of TMED2's involvement in the membrane protein recycling process. In summary, our findings shed light on the roles and underlying mechanisms of TMED2 in the regulation of glioma tumorigenesis and EGFR signaling, suggesting that targeting TMED2 could emerge as a promising therapeutic strategy for gliomas and other tumors associated with aberrant EGFR signaling.


Asunto(s)
Receptores ErbB , Glioma , Ratones , Animales , Receptores ErbB/metabolismo , Glioma/tratamiento farmacológico , Transducción de Señal , Proliferación Celular , Carcinogénesis/genética , Transformación Celular Neoplásica , Línea Celular Tumoral
15.
Sci Bull (Beijing) ; 69(6): 741-746, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38320899

RESUMEN

Several Pulsar Timing Array (PTA) Collaborations have recently provided strong evidence for a nHz Stochastic Gravitational-Wave Background (SGWB). Here we investigate the implications of a first-order phase transition occurring within the early Universe's dark quantum chromodynamics epoch, specifically within the framework of the mirror twin Higgs dark sector model. Our analysis indicates a distinguishable SGWB signal originating from this phase transition, which can explain the measurements obtained by PTAs. Remarkably, a significant portion of the parameter space for the SGWB signal also effectively resolves the existing tensions in both the H0 and S8 measurements in Cosmology. This intriguing correlation suggests a possible common origin of these three phenomena for 0.2<ΔNeff<0.5, where the mirror dark matter component constitutes less than 30% of the total dark matter abundance. Next-generation CMB experiments such as CMB-S4 can test this parameter region.

16.
Nat Commun ; 15(1): 5148, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890274

RESUMEN

Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.


Asunto(s)
Aprendizaje Automático , Homeostasis del Telómero , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Adulto , Envejecimiento Saludable/genética , Persona de Mediana Edad , Masculino , Anciano , Femenino , Acortamiento del Telómero/genética , Envejecimiento/genética , Secuenciación de Nanoporos/métodos , Adulto Joven
17.
Int J Biol Macromol ; : 133652, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971273

RESUMEN

Eighteen S rRNA factor 1 (ESF1) is a predominantly nucleolar protein essential for embryogenesis. Our previous studies have suggested that Esf1 is a negative regulator of the tumor suppressor protein p53. However, it remains unclear whether ESF1 contributes to tumorigenesis. In this current research, we find that increased ESF1 expression correlates with poor survival in multiple tumors including pancreatic cancer. ESF1 is able to regulate cell proliferation, migration, DNA damage-induced apoptosis, and tumorigenesis. Mechanistically, ESF1 physically interacts with MDM2 and is essential for maintaining the stability of MDM2 protein by inhibiting its ubiquitination. Additionally, ESF1 also prevented stress-induced stabilization of p53 in multiple cancer cells. Hence, our findings suggest that ESF1 is a potent regulator of the MDM2-p53 pathway and promotes tumor progression.

18.
Antiviral Res ; 226: 105898, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692413

RESUMEN

SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Tiburones , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Humanos , Tiburones/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Sitios de Unión , Unión Proteica , Biblioteca de Péptidos , Células HEK293 , Mutación
19.
Biochem Biophys Res Commun ; 433(4): 368-73, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23261425

RESUMEN

The C-5-methylation of cytosine in the CpG islands is an important pattern for epigenetic modification of gene, which plays a key role in regulating gene transcription. G-quadruplex is an unusual DNA secondary structure formed in G-rich regions and is identified as a transcription repressor in some oncogenes, such as c-myc and bcl-2. In the present study, the results from CD spectrum and FRET assay showed that the methylation of cytosine in the CpG islands could induce a conformational change of the G-quadruplex in the P1 promoter of bcl-2, and greatly increase the thermal-stability of this DNA oligomer. Moreover, the methylation of cytosine in the G-quadruplex could protect the structure from the disruption by the complementary strand, showing with the increasing ability to arrest the polymerase in PCR stop assay. This data indicated that the stabilization of the G-quadruplex structure in the CpG islands might be involved in the epigenetical transcriptional regulation for specific genes through the C-5-methylation modification pattern.


Asunto(s)
Epigénesis Genética , G-Cuádruplex , Genes bcl-2 , Regiones Promotoras Genéticas , Dicroismo Circular , Biología Computacional/métodos , Islas de CpG , Citosina/metabolismo , Metilación de ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Reacción en Cadena de la Polimerasa/métodos , Temperatura , Transcripción Genética
20.
Nucleic Acids Res ; 39(8): e50, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21296758

RESUMEN

Recently, many small non-coding RNAs (sRNAs) with important regulatory roles have been identified in bacteria. As their eukaryotic counterparts, a major class of bacterial trans-encoded sRNAs acts by basepairing with target mRNAs, resulting in changes in translation and stability of the mRNA. RNA interference (RNAi) has become a powerful gene silencing tool in eukaryotes. However, such an effective RNA silencing tool remains to be developed for prokaryotes. In this study, we described first the use of artificial trans-encoded sRNAs (atsRNAs) for specific gene silencing in bacteria. Based on the common structural characteristics of natural sRNAs in Gram-negative bacteria, we developed the designing principle of atsRNA. Most of the atsRNAs effectively suppressed the expression of exogenous EGFP gene and endogenous uidA gene in Escherichia coli. Further studies demonstrated that the mRNA base pairing region and AU rich Hfq binding site were crucial for the activity of atsRNA. The atsRNA-mediated gene silencing was Hfq dependent. The atsRNAs led to gene silencing and RNase E dependent degradation of target mRNA. We also designed a series of atsRNAs which targeted the toxic genes in Staphyloccocus aureus, but found no significant interfering effect. We established an effective method for specific gene silencing in Gram-negative bacteria.


Asunto(s)
Escherichia coli/genética , Interferencia de ARN , ARN Pequeño no Traducido/química , Emparejamiento Base , Sitios de Unión , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Genes Esenciales , Ingeniería Genética/métodos , Proteína de Factor 1 del Huésped/metabolismo , ARN Mensajero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA