Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2400200121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662550

RESUMEN

Traditional metallic glasses (MGs), based on one or two principal elements, are notoriously known for their lack of tensile ductility at room temperature. Here, we developed a multiprincipal element MG (MPEMG), which exhibits a gigapascal yield strength, significant strain hardening that almost doubles its yield strength, and 2% uniform tensile ductility at room temperature. These remarkable properties stem from the heterogeneous amorphous structure of our MPEMG, which is composed of atoms with significant size mismatch but similar atomic fractions. In sharp contrast to traditional MGs, shear banding in our glass triggers local elemental segregation and subsequent ordering, which transforms shear softening to hardening, hence resulting in shear-band self-halting and extensive plastic flows. Our findings reveal a promising pathway to design stronger, more ductile glasses that can be applied in a wide range of technological fields.

2.
Nat Mater ; 23(1): 52-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052935

RESUMEN

Although metallic nanostructures have been attracting tremendous research interest in nanoscience and nanotechnologies, it is known that environmental attacks, such as surface oxidation, can easily initiate cracking on the surface of metals, thus deteriorating their overall functional/structural properties1-3. In sharp contrast, here we report that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain of up to ~14% at room temperature, which outperform bulk metallic glasses, metallic glass nanowires and many other superelastic metals hitherto reported. Through in situ experiments and atomistic simulations, we reveal that the physical mechanisms underpinning the observed superelasticity can be attributed to the formation of a percolating oxide network in metallic glass nanotubes, which not only restricts atomic-scale plastic events during loading but also leads to the recovery of elastic rigidity on unloading. Our discovery implies that oxidation in low-dimensional metallic glasses can result in unique properties for applications in nanodevices.

3.
Soft Matter ; 20(7): 1565-1572, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270340

RESUMEN

It is natural to expect that small particles in binary mixtures move faster than large ones. However, in binary glass-forming liquids with soft-core particle interactions, we observe the counterintuitive dynamic reversal between large and small particles along with the increase of pressure by performing molecular dynamics simulations. The structural relaxation (dynamic heterogeneity) of small particles is faster (weaker) than large ones at low pressures, but becomes slower (stronger) above a crossover pressure. In contrast, this dynamic reversal never happens in glass-forming liquids with hard-core interactions. We find that the difference of the effective melting temperatures felt by large and small particles can be used to understand the dynamic reversal. In binary mixtures, we derive effective melting temperatures of large and small particles simply from the conversion of units and find that particles with a higher effective melting temperature usually undergo a slower and more heterogeneous relaxation. The presence (absence) of the dynamic reversal in soft-core (hard-core) systems is simply due to the non-monotonic (monotonic) behavior of the melting temperature as a function of pressure. Interestingly, by manipulating the relative softness between large and small particles, we obtain a special case of soft-core systems, in which large particles always have higher effective melting temperatures than small ones. As a result, the dynamic reversal is totally eliminated. Our work provides another piece of evidence of the underlying connections between the properties of non-equilibrium glass-formers and equilibrium crystal-formers.

4.
Phys Chem Chem Phys ; 26(6): 4968-4974, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38230694

RESUMEN

Based on the excellent piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of Eu0.7Sr0.3MnO3/PMN-PT(111) multiferroic heterostructures under different in-plane reading currents, temperatures, light stimuli and electric fields, and discuss the underlying coupling mechanisms of resistivity change. The transition from the electric-field induced lattice strain effect to polarization current effect can be controlled effectively by decreasing the in-plane reading current at room temperature. With the decrease of temperature, the interfacial charge effect dominates over the lattice strain effect due to the reduced charge carrier density. In addition, light stimulus can lead to the delocalization of eg carriers, and thus enhance the lattice strain effect and suppress the interfacial charge effect. This work helps to understand essential physics of magnetoelectric coupling and also provides a potential method to realize energy-efficient multi-field control of manganite thin films.

5.
J Phys Chem A ; 128(5): 829-839, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38266177

RESUMEN

Global-minimum optimizations combined with relativistic quantum chemistry calculations have been performed to characterize the ground-state stable structures of four titled compounds and to analyze the bonding properties. Th2C8 was identified as being a ThC4-Th(C2)2 structure, U2C8 has been found to favor the U-U(C8) structure, and both Th3C8 and U3C8 adopt the (AnC3)2-(AnC2) structure. Then, the wave function analyses reveal that the interactions between the Th 7s-based orbital and the σg molecular orbital of the C2 unit compensate for the excitation energy of 7s16d1 → 6d2 and lead to the stabilization of two Th(IV)s in the ThC4-Th(C2)2 structure. It also reveals that the U species exhibit magnetic exchange coupling behavior in UxC8, for instance, as seen in the direct interaction of U2C8 and the superexchange pathway of U3C8, which effectively stabilizes their low-spin states. This interpretation indicates that the geometric and electronic structures of AnxC8 species are largely influenced by the local magnetic moment and spin correlation.

6.
J Nanobiotechnology ; 22(1): 8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167113

RESUMEN

Electroconductive hydrogels offer a promising avenue for enhancing the repair efficacy of spinal cord injuries (SCI) by restoring disrupted electrical signals along the spinal cord's conduction pathway. Nonetheless, the application of hydrogels composed of diverse electroconductive materials has demonstrated limited capacity to mitigate the post-SCI inflammatory response. Recent research has indicated that the transplantation of M2 microglia effectively fosters SCI recovery by attenuating the excessive inflammatory response. Exosomes (Exos), small vesicles discharged by cells carrying similar biological functions to their originating cells, present a compelling alternative to cellular transplantation. This investigation endeavors to exploit M2 microglia-derived exosomes (M2-Exos) successfully isolated and reversibly bonded to electroconductive hydrogels through hydrogen bonding for synergistic promotion of SCI repair to synergistically enhance SCI repair. In vitro experiments substantiated the significant capacity of M2-Exos-laden electroconductive hydrogels to stimulate the growth of neural stem cells and axons in the dorsal root ganglion and modulate microglial M2 polarization. Furthermore, M2-Exos demonstrated a remarkable ability to mitigate the initial inflammatory reaction within the injury site. When combined with the electroconductive hydrogel, M2-Exos worked synergistically to expedite neuronal and axonal regeneration, substantially enhancing the functional recovery of rats afflicted with SCI. These findings underscore the potential of M2-Exos as a valuable reparative factor, amplifying the efficacy of electroconductive hydrogels in their capacity to foster SCI rehabilitation.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Ratas , Animales , Microglía/metabolismo , Exosomas/metabolismo , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/metabolismo , Neuronas/metabolismo
7.
Nano Lett ; 23(4): 1211-1218, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36748951

RESUMEN

Interfacial atomic configuration and its evolution play critical roles in the structural stability and functionality of mixed zero-dimensional (0D) metal nanoparticles (NPs) and two-dimensional (2D) semiconductors. In situ observation of the interface evolution at atomic resolution is a vital method. Herein, the directional migration and structural evolution of Au NPs on anisotropic ReS2 were investigated in situ by aberration-corrected transmission electron microscopy. Statistically, the migration of Au NPs with diameters below 3 nm on ReS2 takes priority with greater probability along the b-axis direction. Density functional theory calculations suggest that the lower diffusion energy barrier enables the directional migration. The coalescence kinetics of Au NPs is quantitatively described by the relation of neck radius (r) and time (t), expressed as r2=Kt. Our work provides an atomic-resolved dynamic analysis method to study the interfacial structural evolution of metal/2D materials, which is essential to the study of the stability of nanodevices based on mixed-dimensional nanomaterials.

8.
Proc Natl Acad Sci U S A ; 117(1): 86-92, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843936

RESUMEN

Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well established, however, that the apparent linearity of stress with strain is actually a proxy for a much more complex behavior, with a microscopic plasticity that is reflected in diverging nonlinear elastic coefficients. Very generally, the complex structure of the energy landscape is expected to induce a singular response to small perturbations. In the athermal quasistatic regime, this response manifests itself in the form of a scale-free plastic activity. The distribution of the corresponding avalanches should reflect, according to theoretical mean-field calculations [S. Franz and S. Spigler, Phys. Rev. E 95, 022139 (2017)], the geometry of phase space in the vicinity of a typical local minimum. In this work, we characterize this distribution for simple models of glass-forming systems, and we find that its scaling is compatible with the mean-field predictions for systems above the jamming transition. These systems exhibit marginal stability, and scaling relations that hold in the stationary state are examined and confirmed in the elastic regime. By studying the respective influence of system size and age, we suggest that marginal stability is systematic in the thermodynamic limit.

9.
Phys Rev Lett ; 128(1): 015701, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061460

RESUMEN

Metals usually have three crystal structures: face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal-close packed (hcp) structures. Typically, metals exhibit only one of these structures at room temperature. Mechanical processing can cause phase transition in metals, however, metals that exhibit all the three crystal structures have rarely been approached, even when hydrostatic pressure or shock conditions are applied. Here, through in situ observation of the atomic-scale bending and tensile process of ∼5 nm-sized Ag nanowires (NWs), we show that bending is an effective method to facilitate fcc-structured Ag to access all the above-mentioned structures. The process of transitioning the fcc structure into a bcc structure, then into an hcp structure, and finally into a re-oriented fcc structure under bending has been witnessed in its entirety. This re-oriented fcc structure is twin-related to the matrix, which leads to twin nucleation without the need for partial dislocation activities. The results of this study advance our understanding of the deformation mechanism of small-sized fcc metals.

10.
Analyst ; 146(1): 75-84, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33283797

RESUMEN

3-Pyridinylboronate, a zwitterionic boronic acid, displayed effective in situ ESI for reversible covalent tagging of saccharides in both cation and anion modes. The ion mobilities of thus-generated ions were examined with the Bruker timsTOF fleX instrument. Nine disaccharides were examined using this method. They have identical mass-to-charge ratios, differing only in monomer compositions, regio-linkages, and anomeric configurations (α or ß). The IMS separations of the disaccharides from this method were compared with those from sodium adducts reported in the literature. The differentiation effects of this method on the disaccharide isomers were increased on average by an order of magnitude. Using this method, all the pairs of disaccharides selected from nine isomers were completely identified by comparing the mobility spectra of single-tagged and double-tagged ions.

11.
Phys Chem Chem Phys ; 23(41): 23808-23817, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34644716

RESUMEN

Low-dimensional systems have strong multi-body interactions and fewer geometric constraints due to the screening effect of the Coulomb interaction. We use the single-shot GW-Bethe Salpeter equation (G0W0-BSE) to calculate the electronic and optical properties of six-blue arsenic phosphorus (ß-AsP) conformers. The results show significant anisotropic exciton effects of covering visible regions, which apparently changed the light absorption. The maximum exciton binding energy is up to 0.99 eV, which is more extensive than the black phosphorus monolayer (0.9 eV). We predict that the different orbital contributions to valence bands may cause the anisotropic exciton effect difference. Our results indicate that ß-AsP monolayers with the large binding energies of exciton hold a great promise for applications in optoelectronic devices.

12.
Proc Natl Acad Sci U S A ; 115(25): 6375-6380, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29866833

RESUMEN

The origin of dramatic slowing down of dynamics in metallic glass-forming liquids toward their glass transition temperatures is a fundamental but unresolved issue. Through extensive molecular dynamics simulations, here we show that, contrary to the previous beliefs, it is not local geometrical orderings extracted from instantaneous configurations but the intrinsic correlation between configurations that captures the structural origin governing slow dynamics. More significantly, it is demonstrated by scaling analyses that it is the correlation length extracted from configuration correlation rather than dynamic correlation lengths that is the key to determine the drastic slowdown of supercooled metallic liquids. The key role of the configuration correlation established here sheds important light on the structural origin of the mysterious glass transition and provides an essential piece of the puzzle for the development of a universal theoretical understanding of glass transition in glasses.

13.
Phys Rev Lett ; 122(10): 105501, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932637

RESUMEN

Amorphous materials have a rich relaxation spectrum, which is usually described in terms of a hierarchy of relaxation mechanisms. In this work, we investigate the local dynamic modulus spectra in a model glass just above the glass transition temperature by performing a mechanical spectroscopy analysis with molecular dynamics simulations. We find that the spectra, at the local as well as on the global scale, can be well described by the Cole-Davidson formula in the frequency range explored with simulations. Surprisingly, the Cole-Davidson stretching exponent does not change with the size of the local region that is probed. The local relaxation time displays a broad distribution, as expected based on dynamic heterogeneity concepts, but the stretching is obtained independently of this distribution. We find that the size dependence of the local relaxation time and moduli can be well explained by the elastic shoving model.

14.
Soft Matter ; 15(35): 7018-7025, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31433423

RESUMEN

Understanding the difference between the universal low-temperature properties of amorphous and crystalline solids requires an explanation for the stronger damping of long-wavelength phonons in amorphous solids. A longstanding sound attenuation scenario, resulting from a combination of experiments, theories, and simulations, leads to a quartic scaling of sound attenuation with the wavevector, which is commonly attributed to the Rayleigh scattering of sound. Modern computer simulations offer conflicting conclusions regarding the validity of this picture. We simulate glasses with an unprecedentedly broad range of stabilities to perform the first microscopic analysis of sound damping in model glass formers across a range of experimentally relevant preparation protocols. We present convincing evidence that quartic scaling is recovered for small wavevectors irrespective of the glass's stability. With increasing stability, the wavevector where the quartic scaling begins increases by approximately a factor of three and the sound attenuation decreases by over an order of magnitude. Our results uncover an intimate connection between glass stability and sound damping.

15.
Phys Rev Lett ; 120(12): 125502, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29694097

RESUMEN

Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

16.
Phys Chem Chem Phys ; 20(3): 2022-2027, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29300058

RESUMEN

The violent reaction processing and required high-temperature environment involved in growing carbon onions make it difficult to obtain an insight into their evolution mechanism. By using deionized water as the medium of arc discharge, we successfully froze the synthetic reaction at intermediary stages and observed detailed structures of the obtained intermediates of carbon onions. Here we present the atomic-scale scanning transmission electron microscopy investigation of carbon onions produced by arc discharge in water. We directly observed that carbon onions at intermediary growth stage are characterized by unclosed few-layer graphene shells. Meanwhile, a kind of graphene flakes composed of 3 layers or less were also observed in the sample. The kindred evolution linkage was induced to exist among these few-layer graphene flakes and carbon onions in the arc discharge synthetic process. On the basis of microscopy observations, we propose that carbon onions are constructed by curling few-layer graphene flakes, which is beneficial for structural designs and controls of related carbon materials used in different fields.

17.
Angew Chem Int Ed Engl ; 57(33): 10666-10671, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29900645

RESUMEN

Phase transition from WO3 to sub-stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi-metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near-infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high-performance photothermal materials from well-developed oxides.


Asunto(s)
Antineoplásicos/química , Nanotubos/química , Óxidos/química , Tungsteno/química , Agua/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Rayos Infrarrojos , Óxidos/toxicidad , Transición de Fase , Luz Solar , Temperatura , Tungsteno/toxicidad
18.
J Chem Phys ; 146(2): 024507, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088136

RESUMEN

Although the structure and dynamics of metallic glass-forming liquids have been extensively investigated, studies of the pressure effects are rare. In the present study, the structural and dynamical properties of a ternary metallic liquid are systematically studied via extensive molecular dynamics simulations. Our results clearly show that, like isobaric cooling, isothermal compression could also slow down the dynamics of metallic liquid, leading to glass formation. However, the temperature- and pressure-induced glass transitions differ in the formation of local coordination structures and the variation of fragility. The increase of the kinetic fragility with increasing pressure is also accompanied by a monotonic structural fragility change. These findings may suggest a link between dynamics and structure. In addition, with increasing pressure, the dynamics becomes more heterogeneous, as revealed by the non-Gaussian parameter and dynamic correlation length. Here the length scales of both slow and fast domains are examined and discussed by analyzing the four-point dynamic structure factor associated with spatial correlations of atomic mobility. These correlation lengths coexist in the metallic liquids and grow comparatively in the considered temperature and pressure ranges. Finally, the scaling relation between the relaxation times and correlation lengths is discussed, which is found to be consistent with the spirit of Adam-Gibbs and random first-order transition theories.

19.
J Chem Phys ; 145(3): 034505, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27448894

RESUMEN

The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as RI, RII, and RIII, respectively, with qualitatively disparate dynamic behaviors: RI which can be described by "softness makes strong glasses," RII where fragility is independent of softness and can only be tuned by density, and RIII with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

20.
J Chem Phys ; 145(10): 104503, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27634267

RESUMEN

A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA